Package: NCC (via r-universe)

September 8, 2024

Title Simulation and Analysis of Platform Trials with Non-Concurrent Controls

Version 1.0

Author Pavla Krotka [aut, cre]

(<<https://orcid.org/0000-0001-5727-4270>>), Marta Bofill Roig [aut, ths] (<<https://orcid.org/0000-0002-4400-7541>>), Katharina Hees [aut], Peter Jacko [aut], Dominic Magirr [aut], Martin Posch [ctb] (<<https://orcid.org/0000-0001-8499-8573>>)

Maintainer Pavla Krotka <pavla.krotka@meduniwien.ac.at>

Description Design and analysis of flexible platform trials with non-concurrent controls. Functions for data generation, analysis, visualization and running simulation studies are provided. The implemented analysis methods are described in: Bofill Roig et al. (2022) [<doi:10.1186/s12874-022-01683-w>](https://doi.org/10.1186/s12874-022-01683-w), Saville et al. (2022) [<doi:10.1177/17407745221112013>](https://doi.org/10.1177/17407745221112013) and Schmidli et al. (2014) [<doi:10.1111/biom.12242>](https://doi.org/10.1111/biom.12242).

URL <https://pavlakrotka.github.io/NCC/>,

<https://github.com/pavlakrotka/NCC>

License MIT + file LICENSE

Encoding UTF-8

LazyData false

Imports rlang, stats, RBesT, rjags, ggplot2, lmerTest, parallel, doParallel, parallelly, foreach, iterators, spaMM, mgcv, splines

SystemRequirements JAGS 4.x.y

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Suggests rmarkdown, knitr

VignetteBuilder knitr

BugReports <https://github.com/pavlakrotka/NCC/issues>

2 Contents

Repository https://pavlakrotka.r-universe.dev RemoteUrl https://github.com/pavlakrotka/ncc RemoteRef HEAD RemoteSha 3638e6abab260efc64d97270e4640e61da9fe9a0

Contents

Index [67](#page-66-0)

datasim_bin *Simulate binary data from a platform trial with a shared control arm and a given number of experimental treatment arms entering at given time points*

Description

This function simulates data from a platform trial with a given number of experimental treatment arms entering at given time points and a shared control arm. The primary endpoint is a binary endpoint. The user specifies the timing of adding arms in terms of patients recruited to the trial so far and the sample size per experimental treatment arm.

Usage

```
datasim_bin(
  num_arms,
 n_arm,
 d,
 period_blocks = 2,
 p0,
  OR,
  lambda,
  trend,
 N_peak,
 n_wave,
  trend_mean = 0,
  trend_var = 0.5,
  full = FALSE,check = TRUE)
```


Details

Design assumptions:

- The simulated platform trial consists of a given number of experimental treatment arms (specified by the argument num_arms) and one control arm that is shared across the whole platform.
- Participants are indexed by entry order, assuming that at each time unit exactly one participant is recruited and the time of recruitment and observation of the response are equal.
- All participants are assumed to be eligible for all arms in the trial, i.e. the same inclusion and exclusion criteria apply to all experimental and control arms.
- Equal sample sizes (given by parameter n_arm) in all experimental treatment arms are assumed.
- The duration of the trial is divided into so-called periods, defined as time intervals bounded by distinct time points of any treatment arm entering or leaving the platform. Hence, multiple treatment arms entering or leaving at the same time point imply the start of only one additional period.
- Allocation ratio of 1:1:...:1 in each period. Furthermore, block randomization is used to assign patients to the active arms. Block size in each period = period_blocks* (number of active arms in the period).

• If the period sample size is not a multiple of the block size, arms for the remaining participants are chosen by sampling without replacement from a vector containing the indices of active arms replicated times ceiling(remaining sample size/number of active arms).

Data generation:

The binary response y_j for patient j is generated according to:

$$
g(E(y_j)) = \eta_0 + \sum_{k=1}^{K} \cdot I(k_j = k) + f(j)
$$

where $g(\cdot)$ is the logit link function, and η_0 (logit function of parameter p0) and θ_k (log of the parameter OR) are the log odds in the control arm and the log odds ratio of treatment k . K is the total number of treatment arms in the trial (parameter num_arms) and k_j is an indicator of the treatment arm patient j is allocated to.

The function $f(j)$ denotes the time trend, whose strength is indicated by λ_{k_j} (parameter lambda) and which can have the following patterns (parameter trend):

- "linear" trend starts at the beginning of the trial and the log odds increases or decreases linearly with a slope of λ , according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1}$, where N is the total sample size in the trial
- "linear_2" trend starts after the first period (i.e. there is no time trend in the first period) and the log odds increases or decreases linearly with a slope of λ , according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1}$, where N is the total sample size in the trial
- "stepwise" the log odds is constant in each period and increases or decreases by λ each time any treatment arm enters or leaves the trial (i.e. in each period), according to the function $f(j) = \lambda_{k_j} \cdot (c_j - 1)$, where c_j is an index of the period patient j was enrolled in
- "stepwise_2" the log odds is constant in each period and increases or decreases by λ each time a new treatment arm is added to the trial, according to the function $f(j) = \lambda_{k_j} \cdot (w_j - 1)$, where w_i is an indicator of how many treatment arms have already entered the ongoing trial, when patient j was enrolled
- "inv_u" the log odds increases up to the point N_p (parameter N_peak) and decreases afterwards, linearly with a slope of λ , according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1} (I(j \le N_p) - I(j >$ N_p), where N_p indicates the point at which the trend turns from positive to negative in terms of the sample size (note that for negative λ , the log odds ratio decreases first and increases after)
- "seasonal" the log odds increases and decreases periodically with a magnitude of λ , according to the function $f(j) = \lambda \cdot \sin(\psi \cdot 2\pi \cdot \frac{j-1}{N-1})$, where ψ indicates how many cycles should the time trend have (parameter n_wave)

Trials with no time trend can be simulated too, by setting all elements of the vector lambda to zero and choosing an arbitrary pattern.

Value

Data frame: simulated trial data (if full=FALSE, i.e. default) with the following columns:

• j - patient recruitment index

- • response - binary response for patient j
- treatment- index of the treatment patient j was allocated to
- period index of the period patient j was recruited in
- or List (if full=TRUE) containing the following elements:
	- Data simulated trial data, including an additional column p with the probability used for simulating the response for patient j
	- n_total total sample size in the trial
	- n_arm sample size per arm (assumed equal)
	- num_arms number of experimental treatment arms in the trial
	- d timings of adding new arms
	- SS_matrix matrix with the sample sizes per arm and per period
	- period_blocks number to multiply the number of active arms with, in order to get the block size per period
	- p0 response probability in the control arm
	- OR odds ratios for each experimental treatment arm
	- lambda strength of time trend in each arm
	- time_dep_effect time dependent treatment effects for each experimental treatment arm (for computing the bias)
	- trend time trend pattern

Author(s)

Pavla Krotka, Marta Bofill Roig

Examples

```
head(datasim_bin(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
p0 = 0.7, OR = rep(1.8, 3), lambda = rep(0.15, 4), trend="stepwise"))
```


Description

This function simulates data from a platform trial with a given number of experimental treatment arms entering at given time points and a shared control arm. The primary endpoint is a binary endpoint. The user specifies the timing of adding arms in terms of patients recruited to the trial so far and the sample size per experimental treatment arm.

datasim_bin_2 7

Usage

```
datasim_bin_2(
  num_arms,
  n_arm,
  d,
  period_blocks = 2,
  p0,
  OR,
  SS_matrix = NULL,
  lambda,
  trend,
  N_peak,
  n_wave,
  trend_mean = 0,
  trend_var = 0.5,
  full = FALSE,check = TRUE
\mathcal{L}
```


Details

Design assumptions:

- The simulated platform trial consists of a given number of experimental treatment arms (specified by the argument num_arms) and one control arm that is shared across the whole platform.
- Participants are indexed by entry order, assuming that at each time unit exactly one participant is recruited and the time of recruitment and observation of the response are equal.
- All participants are assumed to be eligible for all arms in the trial, i.e. the same inclusion and exclusion criteria apply to all experimental and control arms.
- Equal sample sizes (given by parameter n_arm) in all experimental treatment arms are assumed.
- The duration of the trial is divided into so-called periods, defined as time intervals bounded by distinct time points of any treatment arm entering or leaving the platform. Hence, multiple treatment arms entering or leaving at the same time point imply the start of only one additional period.
- Allocation ratio of 1:1:...:1 in each period. Furthermore, block randomization is used to assign patients to the active arms. Block size in each period = period_blocks* (number of active arms in the period).
- If the period sample size is not a multiple of the block size, arms for the remaining participants are chosen by sampling without replacement from a vector containing the indices of active arms replicated times ceiling(remaining sample size/number of active arms).

Data generation:

The binary response y_j for patient j is generated according to:

$$
g(E(y_j)) = \eta_0 + \sum_{k=1}^{K} \cdot I(k_j = k) + f(j)
$$

where $g(\cdot)$ is the logit link function, and η_0 (logit function of parameter p0) and θ_k (log of the parameter OR) are the log odds in the control arm and the log odds ratio of treatment k . K is the total number of treatment arms in the trial (parameter num_arms) and k_i is an indicator of the treatment arm patient j is allocated to.

The function $f(j)$ denotes the time trend, whose strength is indicated by λ_{k_j} (parameter lambda) and which can have the following patterns (parameter trend):

- "linear" trend starts at the beginning of the trial and the log odds increases or decreases linearly with a slope of λ , according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1}$, where N is the total sample size in the trial
- "linear_2" trend starts after the first period (i.e. there is no time trend in the first period) and the log odds increases or decreases linearly with a slope of λ , according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1}$, where N is the total sample size in the trial
- "stepwise" the log odds is constant in each period and increases or decreases by λ each time any treatment arm enters or leaves the trial (i.e. in each period), according to the function $f(j) = \lambda_{k_j} \cdot (c_j - 1)$, where c_j is an index of the period patient j was enrolled in
- "stepwise_2" the log odds is constant in each period and increases or decreases by λ each time a new treatment arm is added to the trial, according to the function $f(j) = \lambda_{k_j} \cdot (w_j - 1)$, where w_i is an indicator of how many treatment arms have already entered the ongoing trial, when patient j was enrolled
- "inv_u" the log odds increases up to the point N_p (parameter N_peak) and decreases afterwards, linearly with a slope of λ , according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1} (I(j \le N_p) - I(j >$ (N_p)), where N_p indicates the point at which the trend turns from positive to negative in terms of the sample size (note that for negative λ , the log odds ratio decreases first and increases after)
- "seasonal" the log odds increases and decreases periodically with a magnitude of λ , according to the function $f(j) = \lambda \cdot \sin(\psi \cdot 2\pi \cdot \frac{j-1}{N-1})$, where ψ indicates how many cycles should the time trend have (parameter n_wave)

Trials with no time trend can be simulated too, by setting all elements of the vector lambda to zero and choosing an arbitrary pattern.

Value

Data frame: simulated trial data (if full=FALSE, i.e. default) with the following columns:

- j patient recruitment index
- response binary response for patient j
- treatment- index of the treatment patient j was allocated to
- period index of the period patient j was recruited in

or List (if full=TRUE) containing the following elements:

- Data simulated trial data, including an additional column p with the probability used for simulating the response for patient j
- n_total total sample size in the trial
- num_arms number of experimental treatment arms in the trial
- SS_matrix matrix with the sample sizes per arm and per period
- • period_blocks - number to multiply the number of active arms with, in order to get the block size per period
- p0 response probability in the control arm
- OR odds ratios for each experimental treatment arm
- lambda strength of time trend in each arm
- time_dep_effect time dependent treatment effects for each experimental treatment arm (for computing the bias)
- trend time trend pattern

Author(s)

Pavla Krotka, Marta Bofill Roig

Examples

```
ss_matrix <- matrix(c(125, 125, 125, 125, NA, 250), nrow = 3, byrow = TRUE)
head(datasim_bin_2(SS_matrix = ss_matrix,
p0 = 0.7, OR = rep(1.8, 2), lambda = rep(0.15, 3), trend="stepwise_2"))
```


Description

This function simulates data from a platform trial with a given number of experimental treatment arms entering at given time points and a shared control arm. The primary endpoint is a continuous endpoint. The user specifies the timing of adding arms in terms of patients recruited to the trial so far and the sample size per arm.

Usage

```
datasim_cont(
 num_arms,
 n_arm,
  d,
 period_blocks = 2,
 mu0 = 0.
  theta,
  lambda,
  sigma,
  trend,
  N_peak,
```
datasim_cont 11

```
n_wave,
 trend_mean = 0,
 trend_var = 0.5,
 full = FALSE,check = TRUE\mathcal{L}
```


check Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.

Details

Design assumptions:

- The simulated platform trial consists of a given number of experimental treatment arms (specified by the argument num_arms) and one control arm that is shared across the whole platform.
- Participants are indexed by entry order, assuming that at each time unit exactly one participant is recruited and the time of recruitment and observation of the response are equal.
- All participants are assumed to be eligible for all arms in the trial, i.e. the same inclusion and exclusion criteria apply to all experimental and control arms.
- Equal sample sizes (given by parameter n_arm) in all experimental treatment arms are assumed.
- The duration of a platform trial is divided into so-called periods, defined as time intervals bounded by distinct time points of any treatment arm entering or leaving the platform. Hence, multiple treatment arms entering or leaving at the same time point imply the start of only one additional period.
- Allocation ratio of 1:1:...:1 in each period. Furthermore, block randomization is used to assign patients to the active arms. Block size in each period = period_blocks* (number of active arms in the period).
- If the period sample size is not a multiple of the block size, arms for the remaining participants are chosen by sampling without replacement from a vector containing the indices of active arms replicated times ceiling(remaining sample size/number of active arms).

Data generation:

The continuous response y_i for patient j is generated according to:

$$
E(y_j) = \eta_0 + \sum_{k=1}^{K} \cdot I(k_j = k) + f(j)
$$

where η_0 (parameter mu θ) and θ_k (parameter theta) are the response in the control arm and the effect of treatment k. K is the total number of treatment arms in the trial (parameter num_arms) and k_i is an indicator of the treatment arm patient j is allocated to.

The function $f(j)$ denotes the time trend, whose strength is indicated by λ_{k_j} (parameter lambda) and which can have the following patterns (parameter trend):

- "linear" trend starts at the beginning of the trial and the mean response increases or decreases linearly with a slope of λ , according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1}$, where N is the total sample size in the trial
- "linear_2" trend starts after the first period (i.e. there is no time trend in the first period) and the mean response increases or decreases linearly with a slope of λ , according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1}$, where N is the total sample size in the trial

datasim_cont 13

- "stepwise" the mean response is constant in each period and increases or decreases by λ each time any treatment arm enters or leaves the trial (i.e. in each period), according to the function $f(j) = \lambda_{k_j} \cdot (c_j - 1)$, where c_j is an index of the period patient j was enrolled in
- "stepwise_2" the mean response is constant in each period and increases or decreases by λ each time a new treatment arm is added to the trial, according to the function $f(j)$ = $\lambda_{k_j} \cdot (w_j - 1)$, where w_j is an indicator of how many treatment arms have already entered the ongoing trial, when patient j was enrolled
- "inv_u" the mean response increases up to the point N_p (parameter N_peak) and decreases afterwards, linearly with a slope of λ , according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1}(I(j \leq j))$ $(N_p) - I(j > N_p)$, where N_p indicates the point at which the trend turns from positive to negative in terms of the sample size (note that for negative λ , the mean response decreases first and increases after)
- "seasonal" the mean response increases and decreases periodically with a magnitude of λ , according to the function $\bar{f}(j) = \lambda \cdot \sin(\psi \cdot 2\pi \cdot \frac{j-1}{N-1})$, where ψ indicates how many cycles should the time trend have (parameter n_wave)

Trials with no time trend can be simulated too, by setting all elements of the vector lambda to zero and choosing an arbitrary pattern.

Value

Data frame: simulated trial data (if full=FALSE, i.e. default) with the following columns:

- j patient recruitment index
- response continuous response for patient j
- treatment- index of the treatment patient j was allocated to
- period index of the period patient j was recruited in

or List (if full=TRUE) containing the following elements:

- Data simulated trial data, including an additional column means with the theoretical means used for the simulation of the response for patient j
- n_total total sample size in the trial
- n_arm sample size per arm (assumed equal)
- num_arms number of experimental treatment arms in the trial
- d timings of adding new arms
- SS_matrix matrix with the sample sizes per arm and per period
- period_blocks number to multiply the number of active arms with, in order to get the block size per period
- mu θ response in the control arm
- theta treatment effects for each experimental treatment arm
- lambda strength of time trend in each arm
- time_dep_effect time dependent treatment effects for each experimental treatment arm (for computing the bias)
- sigma standard deviation of the responses
- trend time trend pattern

Author(s)

Pavla Krotka, Marta Bofill Roig

Examples

```
head(datasim_count(num_{arms} = 3, n_{arm} = 100, d = c(0, 100, 250),theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear"))
```


Description

This function performs logistic regression taking into account all trial data until the arm under study leaves the trial and adjusting for periods as factors.

Usage

fixmodel_bin(data, arm, alpha = 0.025 , ncc = TRUE, check = TRUE, ...)

Arguments

Details

The model-based analysis adjusts for the time effect by including the factor period (defined as a time interval bounded by any treatment arm entering or leaving the platform). The time is then modelled as a step-function with jumps at the beginning of each period. Denoting by y_j the response probability for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

$$
g(E(y_j)) = \eta_0 + \sum_{k \in \mathcal{K}_M} \theta_k \cdot I(k_j = k) + \sum_{s=2}^{S_M} \tau_s \cdot I(t_j \in T_{S_s})
$$

where $g(\cdot)$ denotes the logit link function and η_0 is the log odds in the control arm in the first period; θ_k represents the log odds ratio of treatment k and control for $k \in \mathcal{K}_M$, where \mathcal{K}_M is the set of treatments that were active in the trial during periods prior or up to the time when the investigated treatment arm left the trial; τ_s indicates the stepwise period effect in terms of the log odds ratio between periods 1 and s ($s = 2, \ldots, S_M$), where S_M denotes the period, in which the investigated treatment arm left the trial.

If the data consists of only one period (e.g. in case of a multi-arm trial), the period in not used as covariate.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the log-odds ratio
- lower_ci lower limit of the $(1-2^*$ alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

References

On model-based time trend adjustments in platform trials with non-concurrent controls. Bofill Roig, M., Krotka, P., et al. BMC Medical Research Methodology 22.1 (2022): 1-16.

Examples

```
trial_data <- datasim_bin(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
p0 = 0.7, OR = rep(1.8, 3), lambda = rep(0.15, 4), trend="stepwise")
```

```
fixmodel_bin(data = trial_data, arm = 3)
```
fixmodel_cal_bin *Frequentist logistic regression model analysis for binary data adjusting for calendar time units*

Description

This function performs logistic regression taking into account all trial data until the arm under study leaves the trial and adjusting for calendar time units as factors.

Usage

```
fixmodel_cal_bin(
  data,
  arm,
  alpha = 0.025,
 unit\_size = 25,
 ncc = TRUE,check = TRUE,...
)
```
Arguments

Details

The model-based analysis adjusts for the time effect by including the factor calendar time unit (defined as time units of fixed length, defined by ùnit_size). The time is then modelled as a step-function with jumps at the beginning of each calendar time unit. Denoting by y_j the response probability for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

fixmodel_cal_cont 17

$$
g(E(y_j)) = \eta_0 + \sum_{k \in \mathcal{K}_M} \theta_k \cdot I(k_j = k) + \sum_{c=2}^{C_M} \tau_c \cdot I(t_j \in T_{C_c})
$$

where $g(\cdot)$ denotes the logit link function and η_0 is the log odds in the control arm in the first calendar time unit; θ_k represents the log odds ratio of treatment k and control for $k \in \mathcal{K}_M$, where \mathcal{K}_M is the set of treatments that were active in the trial during calendar time units prior or up to the time when the investigated treatment arm left the trial; τ_c indicates the stepwise calendar time effect in terms of the log odds ratio between calendar time units 1 and c ($c = 2, \ldots, C_M$), where C_M denotes the calendar time unit, in which the investigated treatment arm left the trial.

If the data consists of only one calendar time unit, the calendar time unit in not used as covariate.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the log-odds ratio
- lower_ci lower limit of the $(1-2^*$ alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_bin(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
p0 = 0.7, OR = rep(1.8, 3), lambda = rep(0.15, 4), trend="stepwise")
```
fixmodel_cal_bin(data = trial_data, arm = 3)

Description

This function performs linear regression taking into account all trial data until the arm under study leaves the trial and adjusting for calendar time units as factors.

Usage

```
fixmodel_cal_cont(
  data,
  arm,
  alpha = 0.025,
 unit_size = 25,
  ncc = TRUE,
  check = TRUE,
  ...
)
```
Arguments

Details

The model-based analysis adjusts for the time effect by including the factor calendar time unit (defined as time units of fixed length, defined by ùnit_size). The time is then modelled as a stepfunction with jumps at the beginning of each calendar time unit. Denoting by y_j the continuous response for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

$$
E(y_j) = \eta_0 + \sum_{k \in \mathcal{K}_M} \theta_k \cdot I(k_j = k) + \sum_{c=2}^{C_M} \tau_c \cdot I(t_j \in T_{C_c})
$$

where η_0 is the response in the control arm in the first calendar time unit; θ_k represents the effect of treatment k compared to control for $k \in \mathcal{K}_M$, where \mathcal{K}_M is the set of treatments that were active in the trial during calendar time units prior or up to the time when the investigated treatment arm left the trial; τ_c indicates the stepwise calendar time effect between calendar time units 1 and c $(c = 2, \ldots, C_M)$, where C_M denotes the calendar time unit, in which the investigated treatment arm left the trial.

If the data consists of only one calendar time unit, the calendar time unit in not used as covariate.

fixmodel_cont 19

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the $(1-2^*$ alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
```

```
fixmodel_cal_cont(data = trial_data, arm = 3)
```


Description

This function performs linear regression taking into account all trial data until the arm under study leaves the trial and adjusting for periods as factors.

Usage

```
fixmodel_cont(data, arm, alpha = 0.025, ncc = TRUE, check = TRUE, ...)
```


Details

The model-based analysis adjusts for the time effect by including the factor period (defined as a time interval bounded by any treatment arm entering or leaving the platform). The time is then modelled as a step-function with jumps at the beginning of each period. Denoting by y_j the continuous response for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

$$
E(y_j) = \eta_0 + \sum_{k \in \mathcal{K}_M} \theta_k \cdot I(k_j = k) + \sum_{s=2}^{S_M} \tau_s \cdot I(t_j \in T_{S_s})
$$

where η_0 is the response in the control arm in the first period; θ_k represents the effect of treatment k compared to control for $k \in \mathcal{K}_M$, where \mathcal{K}_M is the set of treatments that were active in the trial during periods prior or up to the time when the investigated treatment arm left the trial; τ_s indicates the stepwise period effect between periods 1 and s ($s = 2, \ldots, S_M$), where S_M denotes the period, in which the investigated treatment arm left the trial.

If the data consists of only one period (e.g. in case of a multi-arm trial), the period in not used as covariate.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the $(1-2^*$ alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

References

On model-based time trend adjustments in platform trials with non-concurrent controls. Bofill Roig, M., Krotka, P., et al. BMC Medical Research Methodology 22.1 (2022): 1-16.

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
fixmodel_cont(data = trial_data, arm = 3)
```
fixmodel_lin_cont *Frequentist linear regression model analysis for continuous data with linear adjustment for time*

Description

This function performs linear regression taking into account all trial data until the arm under study leaves the trial and adjusting for time as a continuous covariate

Usage

fixmodel_lin_cont(data, arm, alpha = 0.025 , ncc = TRUE, check = TRUE, ...)

Arguments

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the $(1-2^*$ alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

References

On model-based time trend adjustments in platform trials with non-concurrent controls. Bofill Roig, M., Krotka, P., et al. BMC Medical Research Methodology 22.1 (2022): 1-16.

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
```

```
fixmodel_lin_cont(data = trial_data, arm = 3)
```
gam_cont *Generalized additive model analysis for continuous data*

Description

This function performs analysis using a generalized additive model taking into account all trial data until the arm under study leaves the trial and smoothing over the patient entry index.

Usage

```
gam_cont(
  data,
  arm,
  alpha = 0.025,
  ci = FALSE,smoothing_basis = "tp",
 basis_dim = -1,
  gam_method = "GCV.Cp",
  check = TRUE,...
)
```


Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the $(1-2*alpha)$ ^{*}100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
```
gam_cont(data = trial_data, arm = 3, ci = TRUE)

Description

This function computes the matrix with sample sizes per arm and period. It is used in the functions datasim_bin() and datasim_cont().

Usage

get_ss_matrix(num_arms, n_arm, d)

Arguments

Value

Sample size matrix, consisting of the sample size per arm and per period, where the arms are represented in the rows (with the control arm in the first row and the experimental arms coming after ordered by entry time) and the periods are represented in the columns.

Author(s)

Pavla Krotka

Examples

```
get_ss_matrix(num_arms = 3, n_arm = 100, d = c(0, 100, 250))
```
inv_u_trend *Generation of an inverted-u trend*

Description

This function generates a time trend for given time points in the trial according to an inverted-u function.

Usage

```
inv_u_trend(j, lambda, N_peak, n_total, trend_mean, trend_var)
```


linear_trend 25

Details

The time trend is generated according to the function

$$
f(j) = \lambda \cdot \frac{j-1}{N-1} \text{ for } j \le N_p
$$

$$
f(j) = -\lambda \cdot \frac{j-N_p}{N-1} + \lambda \cdot \frac{N_p-1}{N-1} \text{ for } j > N_p
$$

where N is the total sample size (parameter n_total) and N_p (parameter N_peak) indicates the point at which the trend switches direction.

Value

Time trend for time points j.

Author(s)

Marta Bofill Roig, Pavla Krotka

linear_trend *Generation of a linear trend that starts in a given period*

Description

This function generates a time trend for given time points in the trial according to a linear function.

Usage

```
linear_trend(j, lambda, sample_size, trend_mean, trend_var)
```
Arguments

Details

The time trend is generated according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1}$, where N is the total sample size.

Value

Time trend for time points j.

Author(s)

Marta Bofill Roig, Pavla Krotka

MAPpriorNew_cont *Analysis for continuous data using the MAP Prior approach*

Description

This function performs analysis of continuous data using the Meta-Analytic-Predictive (MAP) Prior approach. The method borrows data from non-concurrent controls to obtain the prior distribution for the control response in the concurrent periods.

Usage

```
MAPpriorNew_cont(
  data,
  arm,
  alpha = 0.025,
  opt = 2,
 prior_prec_tau = 4,
 prior_prec_eta = 0.001,
 n_samples = 1000,
  robustify = TRUE,
 weight = 0.1,
  check = TRUE,...
)
```


Details

The MAP approach derives the prior distribution for the control response in the concurrent periods by combining the control information from the non-concurrent periods with a non-informative prior.

The model for the continuous response y_{j_s} for the control patient j in the non-concurrent period s is defined as follows:

$$
E(y_{js}) = \eta_s
$$

where η_s represents the control mean in the non-concurrent period s.

The means for the non-concurrent controls in period s are assumed to have a normal prior distribution with mean μ_{η} and variance τ^2 :

$$
\eta_s \sim \mathcal{N}(\mu_\eta, \tau^2)
$$

For the hyperparameters μ_{η} and τ , normal and half-normal hyperprior distributions are assumed, with mean 0 and variances σ_{η}^2 and σ_{τ}^2 , respectively:

$$
\mu_{\eta} \sim \mathcal{N}(0, \sigma_{\eta}^2)
$$

$$
\tau \sim HalfNormal(0, \sigma_{\tau}^2)
$$

The MAP prior distribution $p_{MAP} (\eta_{CC})$ for the control response in the concurrent periods is then obtained as the posterior distribution of the parameters η_s from the above specified model.

If robustify=TRUE, the MAP prior is robustified by adding a weakly-informative mixture component $p_{\text{non}-\text{inf}}$, leading to a robustified MAP prior distribution:

$$
p_{rMAP}(\eta_{CC}) = (1-w) \cdot p_{MAP}(\eta_{CC}) + w \cdot p_{\text{non-int}}(\eta_{CC})
$$

where w (parameter weight) may be interpreted as the degree of skepticism towards borrowing strength.

In this function, the argument alpha corresponds to $1 - \gamma$, where γ is the decision boundary. Specifically, the posterior probability of the difference distribution under the null hypothesis is such that: $P(\mu_{treatment} - \mu_{control} > 0) \ge 1$ –alpha. In case of a non-informative prior this coincides with the frequentist type I error.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val posterior probability that the difference in means is less than zero
- treat_effect posterior mean of difference in means
- lower_ci lower limit of the $(1-2*alpha)*100\%$ credible interval for difference in means
- upper_ci upper limit of the $(1-2*a1pha)*100\%$ credible interval for difference in means
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)

Author(s)

Marta Bofill Roig, Katharina Hees

References

Robust meta-analytic-predictive priors in clinical trials with historical control information. Schmidli, H., et al. Biometrics 70.4 (2014): 1023-1032.

Applying Meta-Analytic-Predictive Priors with the R Bayesian Evidence Synthesis Tools. Weber, S., et al. Journal of Statistical Software 100.19 (2021): 1548-7660.

Examples

trial_data <- datasim_cont(num_arms = 3, n_arm = 100, $d = c(0, 100, 250)$, theta = $rep(0.25, 3)$, lambda = $rep(0.15, 4)$, sigma = 1, trend = "stepwise")

MAPpriorNew_cont(data = trial_data, arm = 3)

MAPprior_bin *Analysis for binary data using the MAP Prior approach*

Description

This function performs analysis of binary data using the Meta-Analytic-Predictive (MAP) Prior approach. The method borrows data from non-concurrent controls to obtain the prior distribution for the control response in the concurrent periods.

MAPprior_bin 29

Usage

```
MAPprior_bin(
  data,
  arm,
  alpha = 0.025,opt = 2,
  prior\_prec\_tau = 4,
  prior_prec_eta = 0.001,
  n_samples = 1000,
  n_{\text{chains}} = 4,
  n_iter = 4000,
  n_adapt = 1000,
  robustify = TRUE,
  weight = 0.1,
  check = TRUE,
  ...
\mathcal{L}
```


Details

The MAP approach derives the prior distribution for the control response in the concurrent periods by combining the control information from the non-concurrent periods with a non-informative prior.

The model for the binary response y_{j_s} for the control patient j in the non-concurrent period s is defined as follows:

$$
g(E(y_{js})) = \eta_s
$$

where $g(\cdot)$ denotes the logit link function and η_s represents the control log odds in the non-concurrent period s.

The log odds for the non-concurrent controls in period s are assumed to have a normal prior distribution with mean μ_{η} and variance τ^2 :

$$
\eta_s \sim \mathcal{N}(\mu_\eta, \tau^2)
$$

For the hyperparameters μ_{η} and τ , normal and half-normal hyperprior distributions are assumed, with mean 0 and variances σ_{η}^2 and σ_{τ}^2 , respectively:

$$
\mu_{\eta} \sim \mathcal{N}(0, \sigma_{\eta}^2)
$$

 $\tau \sim HalfNormal(0, \sigma_{\tau}^2)$

The MAP prior distribution $p_{MAP} (\eta_{CC})$ for the control response in the concurrent periods is then obtained as the posterior distribution of the parameters η_s from the above specified model.

If robustify=TRUE, the MAP prior is robustified by adding a weakly-informative mixture component p_{non−inf}, leading to a robustified MAP prior distribution:

$$
p_{rMAP}(\eta_{CC}) = (1 - w) \cdot p_{MAP}(\eta_{CC}) + w \cdot p_{\text{non-int}}(\eta_{CC})
$$

where w (parameter weight) may be interpreted as the degree of skepticism towards borrowing strength.

In this function, the argument alpha corresponds to $1 - \gamma$, where γ is the decision boundary. Specifically, the posterior probability of the difference distribution under the null hypothesis is such that: $P(p_{treatment} - p_{control} > 0) \ge 1$ –alpha. In case of a non-informative prior this coincides with the frequentist type I error.

MAPprior_cont 31

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val posterior probability that the log-odds ratio is less than zero
- treat_effect posterior mean of log-odds ratio
- lower_ci lower limit of the (1-2*alpha)*100% credible interval for log-odds ratio
- upper_ci upper limit of the (1-2*alpha)*100% credible interval for log-odds ratio
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)

Author(s)

Katharina Hees

References

Robust meta-analytic-predictive priors in clinical trials with historical control information. Schmidli, H., et al. Biometrics 70.4 (2014): 1023-1032.

Applying Meta-Analytic-Predictive Priors with the R Bayesian Evidence Synthesis Tools. Weber, S., et al. Journal of Statistical Software 100.19 (2021): 1548-7660.

Examples

```
trial_data <- datasim_bin(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
p0 = 0.7, OR = rep(1.8, 3), lambda = rep(0.15, 4), trend="stepwise")
```

```
MAPprior\_bin(data = trial\_data, arm = 3)
```
MAPprior_cont *Analysis for continuous data using the MAP Prior approach*

Description

This function performs analysis of continuous data using the Meta-Analytic-Predictive (MAP) Prior approach. The method borrows data from non-concurrent controls to obtain the prior distribution for the control response in the concurrent periods.

Usage

```
MAPprior_cont(
  data,
  arm,
  alpha = 0.025,
  opt = 2,
  prior_prec_tau = 4,
```

```
prior_prec_eta = 0.001,
 n_samples = 1000,
 n_{\text{chains}} = 4,
 n_{i}iter = 4000,
 n\_adapt = 1000,robustify = TRUE,
 weight = 0.1,
 check = TRUE,...
)
```


Details

The MAP approach derives the prior distribution for the control response in the concurrent periods by combining the control information from the non-concurrent periods with a non-informative prior.

The model for the continuous response $y_{j,s}$ for the control patient j in the non-concurrent period s is defined as follows:

$$
E(y_{js}) = \eta_s
$$

where η_s represents the control mean in the non-concurrent period s.

The means for the non-concurrent controls in period s are assumed to have a normal prior distribution with mean μ_{η} and variance τ^2 :

$$
\eta_s \sim \mathcal{N}(\mu_\eta, \tau^2)
$$

For the hyperparameters μ_n and τ , normal and half-normal hyperprior distributions are assumed, with mean 0 and variances σ_{η}^2 and σ_{τ}^2 , respectively:

$$
\mu_{\eta} \sim \mathcal{N}(0, \sigma_{\eta}^{2})
$$

$$
\tau \sim HalfNormal(0, \sigma_{\tau}^{2})
$$

The MAP prior distribution $p_{MAP} (\eta_{CC})$ for the control response in the concurrent periods is then obtained as the posterior distribution of the parameters η_s from the above specified model.

If robustify=TRUE, the MAP prior is robustified by adding a weakly-informative mixture component $p_{\text{non-int}}$, leading to a robustified MAP prior distribution:

$$
p_{rMAP}(\eta_{CC}) = (1 - w) \cdot p_{MAP}(\eta_{CC}) + w \cdot p_{\text{non-int}}(\eta_{CC})
$$

where w (parameter weight) may be interpreted as the degree of skepticism towards borrowing strength.

In this function, the argument alpha corresponds to $1 - \gamma$, where γ is the decision boundary. Specifically, the posterior probability of the difference distribution under the null hypothesis is such that: $P(\mu_{treatment} - \mu_{control} > 0) \ge 1$ – alpha. In case of a non-informative prior this coincides with the frequentist type I error.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val posterior probability that the difference in means is less than zero
- treat_effect posterior mean of difference in means
- lower_ci lower limit of the $(1-2*alpha)*100\%$ credible interval for difference in means
- upper_ci upper limit of the $(1-2*alpha)*100%$ credible interval for difference in means
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)

Author(s)

Katharina Hees

References

Robust meta-analytic-predictive priors in clinical trials with historical control information. Schmidli, H., et al. Biometrics 70.4 (2014): 1023-1032.

Applying Meta-Analytic-Predictive Priors with the R Bayesian Evidence Synthesis Tools. Weber, S., et al. Journal of Statistical Software 100.19 (2021): 1548-7660.

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "stepwise")
```

```
MAPprior_cont(data = trial_data, arm = 3)
```
mixmodel_AR1_cal_cont *Mixed regression model analysis for continuous data adjusting for calendar time units as a random factor with AR1 correlation structure*

Description

This function performs linear mixed model regression taking into account all trial data until the arm under study leaves the trial and adjusting for calendar time units as random factors with AR1 correlation structure.

Usage

```
mixmodel_AR1_cal_cont(
  data,
  arm,
  alpha = 0.025,
  ci = FALSE,unit_size = 25,
 ncc = TRUE,check = TRUE,
  ...
)
```
Arguments

data Data frame with trial data, e.g. result from the datasim_cont() function. Must contain columns named 'treatment' and 'response'.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the $(1-2^* \text{alpha})^*100\%$ confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
mixmodel_AR1_cal_cont(data = trial_data, arm = 3, ci = TRUE)
```


Description

This function performs linear mixed model regression taking into account all trial data until the arm under study leaves the trial and adjusting for periods as random factors with AR1 correlation structure.

Usage

```
mixmodel_AR1_cont(
  data,
  arm,
  alpha = 0.025,
 ci = FALSE,ncc = TRUE,check = TRUE,
  ...
)
```
Arguments

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the $(1-2*alpha)$ ^{*}100% confidence interval
- upper_ci upper limit of the $(1-2^*$ alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
```

```
mixmodel_AR1_cont(data = trial_data, arm = 3, ci = TRUE)
```
mixmodel_cal_cont *Mixed regression model analysis for continuous data adjusting for calendar time units as a random factor*

Description

This function performs linear mixed model regression taking into account all trial data until the arm under study leaves the trial and adjusting for calendar time units as random factors.

Usage

```
mixmodel_cal_cont(
  data,
  arm,
  alpha = 0.025,
  ci = FALSE,unit_size = 25,
  ncc = TRUE,check = TRUE,
  ...
)
```
Arguments

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the $(1-2^*$ alpha)*100% confidence interval
- • upper_ci - upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
mixmodel_cal_cont(data = trial_data, arm = 3, ci = TRUE)
```


Description

This function performs linear mixed model regression taking into account all trial data until the arm under study leaves the trial and adjusting for periods as random factors.

Usage

```
mixmodel_cont(
 data,
  arm,
  alpha = 0.025,
 ci = FALSE,ncc = TRUE,check = TRUE,
  ...
)
```


Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the $(1-2^*$ alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
mixmodel_cont(data = trial_data, arm = 3, ci = TRUE)
```
mixmodel_int_cal_cont *Mixed regression model analysis for continuous data using the covariates treatment and calendar time unit as fixed effects and the interaction between them as a random effect*

Description

This function performs linear mixed model regression taking into account all trial data until the arm under study leaves the trial and adjusting for calendar time units as random factors.

Usage

```
mixmodel_int_cal_cont(
  data,
 arm,
 alpha = 0.025,
 ci = FALSE,unit_size = 25,
 ncc = TRUE,check = TRUE,...
)
```
Arguments

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the $(1-2^*$ alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
mixmodel_int_cal_cont(data = trial_data, arm = 3, ci = TRUE)
```


Description

This function performs linear mixed model regression taking into account all trial data until the arm under study leaves the trial and adjusting for periods as random factors.

Usage

```
mixmodel_int_cont(
 data,
 arm,
 alpha = 0.025,
 ci = FALSE,ncc = TRUE,check = TRUE,...
)
```


Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the $(1-2^* \text{alpha})^*100\%$ confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
mixmodel_int_cont(data = trial_data, arm = 3, ci = TRUE)
```


Description

This function performs linear regression taking into account all trial data until the arm under study leaves the trial and adjusting for time using discontinuous piecewise polynomials in each calendar time unit.

Usage

```
piecewise_cal_cont(
  data,
  arm,
  alpha = 0.025,
  unit_size = 25.
  ncc = TRUE,poly_degree = 3,
 check = TRUE,...
)
```
Arguments

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the $(1-2*alpha)$ ^{*}100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
piecewise_cal_cont(data = trial_data, arm = 3)
```
piecewise_cont *Model-based analysis for continuous data using discontinuous piecewise polynomials per period*

Description

This function performs linear regression taking into account all trial data until the arm under study leaves the trial and adjusting for time using discontinuous piecewise polynomials in each period.

Usage

```
piecewise_cont(
  data,
  arm,
  alpha = 0.025,
  ncc = TRUE,poly_degree = 3,
  check = TRUE,...
)
```
Arguments

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the $(1-2^* \text{alpha})^*100\%$ confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

plot_trial 45

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
```

```
piecewise_cont(data = trial_data, arm = 3)
```
plot_trial *Function for visualizing the simulated trial*

Description

This function creates a plot visualizing the trial progress over time.

Usage

```
plot_trial(treatments)
```
Arguments

Value

ggplot showing trial progress over time.

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_bin(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
p0 = 0.7, OR = rep(1.8, 3), lambda = rep(0.15, 4), trend="stepwise")
```

```
plot_trial(treatments = trial_data$treatment)
```


Description

This function performs pooled analysis (naively pooling concurrent and non-concurrent controls without adjustment) using a logistic model.

Usage

 $poolmodel_bin(data, arm, alpha = 0.025, check = TRUE, ...)$

Arguments

Details

The pooled analysis takes into account only the data from the evaluated experimental treatment arm and the whole control arm and uses a logistic regression model to evaluate the given treatment arm. Denoting by y_j the response probability for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

$$
g(E(y_j)) = \eta_0 + \theta_M \cdot I(k_j = M)
$$

where $g(\cdot)$ denotes the logit link function and η_0 is the log odds in the control arm; θ_M represents the log odds ratio of treatment M and control.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the log-odds ratio
- lower_ci lower limit of the $(1-2^*$ alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

poolmodel_cont 47

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_bin(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
p0 = 0.7, OR = rep(1.8, 3), lambda = rep(0.15, 4), trend="stepwise")
```

```
poolmodel_bin(data = trial_data, arm = 3)
```
poolmodel_cont *Pooled analysis for continuous data*

Description

This function performs pooled analysis (naively pooling concurrent and non-concurrent controls without adjustment) using a linear model.

Usage

poolmodel_cont(data, arm, alpha = 0.025, check = TRUE, ...)

Arguments

Details

The pooled analysis takes into account only the data from the evaluated experimental treatment arm and the whole control arm and uses a linear regression model to evaluate the given treatment arm. Denoting by y_j the continuous response for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

$$
E(y_j) = \eta_0 + \theta_M \cdot I(k_j = M)
$$

where η_0 is the response in the control arm; θ_M represents the treatment effect of treatment M as compared to control.

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the $(1-2*alpha)$ ^{*}100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
```

```
poolmodel_cont(data = trial_data, arm = 3)
```
seasonal_trend *Generation of a seasonal trend*

Description

This function generates a time trend for given time points in the trial according to a periodic function.

Usage

```
seasonal_trend(j, lambda, n_wave, n_total, trend_mean, trend_var)
```


Details

The time trend is generated according to the function $f(j) = \lambda \cdot \sin(\psi \cdot 2\pi \cdot \frac{j-1}{N-1})$, where N is the total sample size (parameter n_total) and the parameter ψ corresponds to the input parameter n_wave.

Value

Time trend for time points j.

Author(s)

Marta Bofill Roig, Pavla Krotka

sepmodel_adj_bin *Separate analysis for binary data adjusted for periods*

Description

This function performs separate analysis (only taking into account concurrent controls) using a logistic model and adjusting for periods, if the treatment arm stays in the trial for more than one period.

Usage

```
sepmodel\_adj\_bin(data, arm, alpha = 0.025, check = TRUE, ...)
```
Arguments

Details

The adjusted separate analysis takes into account only the data from the evaluated experimental treatment arm and its concurrent controls and adjusts for the time effect by including the factor period (defined as a time interval bounded by any treatment arm entering or leaving the platform). The time is then modelled as a step-function with jumps at the beginning of each period. Denoting by y_j the response probability for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

$$
g(E(y_j)) = \eta_0 + \theta_M \cdot I(k_j = M) + \sum_{s = S_{M_1} + 1}^{S_{M_2}} \tau_s \cdot I(t_j \in T_{S_s})
$$

where $g(\cdot)$ denotes the logit link function and η_0 is the log odds in the concurrent controls; θ_M represents the log odds ratio of treatment M and control; τ_s indicates the stepwise period effect in terms of the log odds ratio between periods S_{M_1} and s ($s = S_{M_1}+1, \ldots, S_{M_2}$), where S_{M_1} and S_{M_2} denote the periods, in which the investigated treatment arm joined and left the trial, respectively. If the data consists of only one period, the period in not used as covariate.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the log-odds ratio
- lower_ci lower limit of the $(1-2^*$ alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h θ indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_bin(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
p0 = 0.7, OR = rep(1.8, 3), lambda = rep(0.15, 4), trend="stepwise")
sepmodel_adj_bin(data = trial_data, arm = 3)
```
sepmodel_adj_cont *Separate analysis for continuous data adjusted for periods*

Description

This function performs separate analysis (only taking into account concurrent controls) using a linear model and adjusting for periods, if the treatment arm stays in the trial for more than one period.

Usage

```
sepmodel\_adj\_cont(data, arm, alpha = 0.025, check = TRUE, ...)
```
Arguments

Details

The adjusted separate analysis takes into account only the data from the evaluated experimental treatment arm and its concurrent controls and adjusts for the time effect by including the factor period (defined as a time interval bounded by any treatment arm entering or leaving the platform). The time is then modelled as a step-function with jumps at the beginning of each period. Denoting by y_j the response probability for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

$$
E(y_j) = \eta_0 + \theta_M \cdot I(k_j = M) + \sum_{s = S_{M_1} + 1}^{S_{M_2}} \tau_s \cdot I(t_j \in T_{S_s})
$$

where η_0 is the response in the concurrent controls; θ_M represents the treatment effect of treatment M as compared to control; τ_s indicates the stepwise period effect between periods S_{M_1} and s ($s =$ S_{M_1} + 1, ..., S_{M_2}), where S_{M_1} and S_{M_2} denote the periods, in which the investigated treatment arm joined and left the trial, respectively.

If the data consists of only one period, the period in not used as covariate.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the $(1-2^*$ alpha)*100% confidence interval
- upper_ci upper limit of the $(1-2^*$ alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
sepmodel_adj_cont(data = trial_data, arm = 3)
```
sepmodel_bin *Separate analysis for binary data*

Description

This function performs separate analysis (only taking into account concurrent controls) using a logistic model.

Usage

```
sepmodel_bin(data, arm, alpha = 0.025, check = TRUE, ...)
```
Arguments

Details

The separate analysis takes into account only the data from the evaluated experimental treatment arm and its concurrent controls and uses a logistic regression model to evaluate the given treatment arm. Denoting by y_j the response probability for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

$$
g(E(y_j)) = \eta_0 + \theta_M \cdot I(k_j = M)
$$

where $g(\cdot)$ denotes the logit link function and η_0 is the log odds in the concurrent controls; θ_M represents the log odds ratio of treatment M and control.

sepmodel_cont 53

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the log-odds ratio
- lower_ci lower limit of the $(1-2^*$ alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_bin(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
p0 = 0.7, OR = rep(1.8, 3), lambda = rep(0.15, 4), trend="stepwise")
```
sepmodel_bin(data = trial_data, arm = 3)

sepmodel_cont *Separate analysis for continuous data*

Description

This function performs separate analysis (only taking into account concurrent controls) using a linear model.

Usage

```
sepmodel_count(data, arm, alpha = 0.025, check = TRUE, ...)
```


Details

The separate analysis takes into account only the data from the evaluated experimental treatment arm and its concurrent controls and uses a linear regression model to evaluate the given treatment arm. Denoting by y_j the continuous response for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

$$
E(y_j) = \eta_0 + \theta_M \cdot I(k_j = M)
$$

where η_0 is the response in the concurrent controls; θ_M represents the treatment effect of treatment M as compared to control.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the $(1-2^*$ alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
```
sepmodel_cont(data = trial_data, arm = 3)

sim_study *Wrapper function performing simulation studies for a given set of scenarios (not parallelized)*

Description

This function performs a simulation study for a given set of scenarios, analyzing simulated data using different models as indicated by the user. Performs inference for indicated experimental treatment arms. Simulates the probability to reject H_0 based on a given number of replications.

sim_study 55

Usage

```
sim_study(
  nsim,
  scenarios,
  arms,
  models = c("fixmodel", "sepmodel", "poolmodel"),
  endpoint,
  verbose = TRUE
\mathcal{L}
```
Arguments

Value

Data frame with all considered scenarios and corresponding results - the probability to reject H_0 .

Author(s)

Pavla Krotka

Examples

```
# Create data frame with all parameters:
sim_scenarios <- data.frame(num_arms = 4,
n_{arm} = 250,d1 = 250*0,d2 = 250*1,
d3 = 250*2,
d4 = 250*3,
period_blocks = 2,
mu0 = 0,
```

```
sigma = 1,
theta1 = 0,
theta2 = 0,
theta3 = 0,
theta4 = 0,
lambda0 = rep(seq(-0.15, 0.15, length.out = 9), 2),lambda1 = rep(seq(-0.15, 0.15, length.out = 9), 2),lambda2 = rep(seq(-0.15, 0.15, length.out = 9), 2),lambda3 = rep(seq(-0.15, 0.15, length.out = 9), 2),lambda4 = rep(seq(-0.15, 0.15, length.out = 9), 2),trend = c(rep("linear", 9), rep("stepwise_2", 9)),
alpha = 0.025,
ncc = TRUE)
# Run simulation study:
sim\_results <- sim\_study(nsim = 100, scenarios = sim\_scenarios, arms = c(3, 4),models = c("fixmodel", "sepmodel", "poolmodel"), endpoint = "cont")
```
sim_study_par *Wrapper function performing simulation studies for a given set of scenarios (parallelized on replication level)*

Description

This function performs a simulation study for a given set of scenarios, analyzing simulated data using different models as indicated by the user. Performs inference for indicated experimental treatment arms. Simulates the probability to reject H_0 , and the bias, as well as the mean squared error (MSE) of the treatment effect estimates based on a given number of replications.

Usage

```
sim_study_par(
  nsim,
  scenarios,
  arms,
 models = c("fixmodel", "sepmodel", "poolmodel"),
 endpoint,
 perc\_cores = 0.9,
  verbose = TRUE
)
```


Value

Data frame with all considered scenarios and corresponding results - the probability to reject H_0 , and the bias, as well as the mean squared error (MSE) of the treatment effect estimates.

Author(s)

Pavla Krotka

Examples

```
# Create data frame with all parameters:
sim_scenarios <- data.frame(num_arms = 4,
n_{arm} = 250,
d1 = 250*0,
d2 = 250*1,
d3 = 250 \times 2,
d4 = 250*3,
period_blocks = 2,
mu0 = 0,
sigma = 1,
theta1 = 0,
theta2 = 0,
theta3 = 0,
theta4 = 0,
lambda@ = rep(seq(-0.15, 0.15, length.out = 9), 2),lambda1 = rep(seq(-0.15, 0.15, length.out = 9), 2),lambda2 = rep(seq(-0.15, 0.15, length.out = 9), 2),lambda3 = rep(seq(-0.15, 0.15, length.out = 9), 2),
lambda4 = rep(seq(-0.15, 0.15, length.out = 9), 2),trend = c(rep("linear", 9), rep("stepwise_2", 9)),
alpha = 0.025,
ncc = TRUE)
```

```
# Run simulation study:
sim_results <- sim_study_par(nsim = 100, scenarios = sim_scenarios, arms = c(3, 4),
models = c("fixmodel", "sepmodel", "poolmodel"), endpoint = "cont")
```
splines_cal_cont *Spline regression analysis for continuous data with knots placed according to calendar time units*

Description

This function performs linear regression taking into account all trial data until the arm under study leaves the trial and adjusting for time using regression splines with knots placed according to calendar time units.

Usage

```
splines_cal_cont(
 data,
  arm,
 alpha = 0.025,
 unit_size = 25,
 ncc = TRUE,bs\_degree = 3,
 check = TRUE,...
)
```

```
Arguments
```


splines_cont 59

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the $(1-2^*$ alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- knots positions of the knots in terms of patient index
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
```

```
splines_cal_cont(data = trial_data, arm = 3)
```


Description

This function performs linear regression taking into account all trial data until the arm under study leaves the trial and adjusting for time using regression splines with knots placed according to periods.

Usage

```
splines_cont(
 data,
  arm,
 alpha = 0.025,
 ncc = TRUE,bs_degree = 3,
 check = TRUE,...
)
```
Arguments

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the $(1-2*alpha)$ ^{*}100% confidence interval
- upper_ci upper limit of the $(1-2^*$ alpha) $*100\%$ confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- knots positions of the knots in terms of patient index
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
splines_cont(data = trial_data, arm = 3)
```


Description

This function generates a stepwise trend for a given period. No time trend is assumed in the first period.

Usage

sw_trend(cj, lambda, trend_mean, trend_var)

Arguments

Details

The time trend is generated according to the function $f(j) = \lambda \cdot (c_j - 1)$, where c_j is an index of the period patient j was enrolled in.

Value

Time trend in period c_j .

Author(s)

Marta Bofill Roig, Pavla Krotka

timemachine_bin *Time machine analysis for binary data*

Description

This function performs analysis of binary data using the Time Machine approach. It takes into account all data until the investigated arm leaves the trial. It is based on logistic regression with treatment as a categorical variable and covariate adjustment for time via a second-order Bayesian normal dynamic linear model (separating the trial into buckets of pre-defined size).

Usage

```
timemachine_bin(
  data,
  arm,
  alpha = 0.025,
 prec\_theta = 0.001,
 prec_{eta} = 0.001,
  tau_a = 0.1,
  tau_b = 0.01,bucket_size = 25,
  check = TRUE,...
\mathcal{L}
```
Arguments

Details

The Time Machine divides the trial duration into C calendar time intervals of equal length ("buckets"), which are indexed backwards in time. That is to say, the most recent time interval is denoted by $c = 1$ and the time interval corresponding to the beginning of the trial by $c = C$. The analysis is performed as soon as the analyzed treatment arm finishes in the trial.

The model is defined as follows:

$$
g(E(y_j)) = \eta_0 + \theta_{k_j} + \alpha_{c_j}
$$

timemachine_bin 63

where y_j is the binary response for patient j and $g(\cdot)$ is the logit link function, which maps the expected value of the patient response to the linear predictors in the model. The model intercept η_0 denotes the response of the control group at time of the analysis, θ_{k_j} is the effect of the treatment arm k that patient j was enrolled in, relative to control in terms of the log odds ratio. For the parameters η_0 and θ_{k_j} , normal prior distributions are assumed, with mean 0 and variances $\sigma_{\eta_0}^2$ and σ_{θ}^2 , respectively:

$$
\eta_0 \sim \mathcal{N}(0, \sigma_{\eta_0}^2)
$$

$$
\theta_{k_j} \sim \mathcal{N}(0, \sigma_{\theta}^2)
$$

In the Time Machine, time effect is represented by α_{c_j} , which is the change in the response in time bucket c_j (which denotes the time bucket in which patient j is enrolled) compared to the most recent time bucket $c = 1$ and is modeled using a Bayesian second-order normal dynamic linear model. This creates a smoothing over the control response, such that closer time buckets are modeled with more similar response rates:

$$
\alpha_1 = 0
$$

$$
\alpha_2 \sim \mathcal{N}(0, 1/\tau)
$$

$$
\alpha_c \sim \mathcal{N}(2\alpha_{c-1} - \alpha_{c-2}, 1/\tau), 3 \leq c \leq C
$$

where τ denotes the drift parameter that controls the degree of smoothing over the time buckets and is assumed to have a Gamma hyperprior distribution:

$$
\tau \sim Gamma(a_{\tau}, b_{\tau})
$$

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val posterior probability that the log-odds ratio is less than zero
- treat_effect posterior mean of log-odds ratio
- lower_ci lower limit of the (1-2*alpha)*100% credible interval for log-odds ratio
- upper_ci upper limit of the (1-2*alpha)*100% credible interval for log-odds ratio
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)

Author(s)

Dominic Magirr, Peter Jacko

References

The Bayesian Time Machine: Accounting for Temporal Drift in Multi-arm Platform Trials. Saville, B. R., Berry, D. A., et al. Clinical Trials 19.5 (2022): 490-501.

Examples

```
trial_data <- datasim_bin(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
p0 = 0.7, OR = rep(1.8, 3), lambda = rep(0.15, 4), trend="stepwise")
timemachine_bin(data = trial_data, arm = 3)
```
timemachine_cont *Time machine analysis for continuous data*

Description

This function performs analysis of continuous data using the Time Machine approach. It takes into account all data until the investigated arm leaves the trial. It is based on linear regression with treatment as a categorical variable and covariate adjustment for time via a second-order Bayesian normal dynamic linear model (separating the trial into buckets of pre-defined size).

Usage

```
timemachine_cont(
  data,
  arm,
  alpha = 0.025,
  prec_{i}theta = 0.001,
 prec_{eta} = 0.001,
  tau_a = 0.1,
  tau_b = 0.01,
  prec_a = 0.001,prec_b = 0.001,bucket_size = 25,
  check = TRUE,...
\mathcal{L}
```


Details

The Time Machine divides the trial duration into C calendar time intervals of equal length ("buckets"), which are indexed backwards in time. That is to say, the most recent time interval is denoted by $c = 1$ and the time interval corresponding to the beginning of the trial by $c = C$. The analysis is performed as soon as the analyzed treatment arm finishes in the trial.

The model is defined as follows:

$$
E(y_j) = \eta_0 + \theta_{k_j} + \alpha_{c_j}
$$

where y_j is the continuous response for patient j. The model intercept η_0 denotes the response of the control group at time of the analysis, θ_{k_j} is the effect of the treatment arm k that patient j was enrolled in, relative to control. For the parameters η_0 and θ_{k_j} , normal prior distributions are assumed, with mean 0 and variances $\sigma_{\eta_0}^2$ and σ_{θ}^2 , respectively:

$$
\eta_0 \sim \mathcal{N}(0, \sigma_{\eta_0}^2)
$$

$$
\theta_{k_j} \sim \mathcal{N}(0, \sigma_{\theta}^2)
$$

In the Time Machine, time effect is represented by α_{c_j} , which is the change in the response in time bucket c_j (which denotes the time bucket in which patient j is enrolled) compared to the most recent time bucket $c = 1$ and is modeled using a Bayesian second-order normal dynamic linear model. This creates a smoothing over the control response, such that closer time buckets are modeled with more similar response rates:

$$
\alpha_1 = 0
$$

$$
\alpha_2 \sim \mathcal{N}(0, 1/\tau)
$$

$$
\alpha_c \sim \mathcal{N}(2\alpha_{c-1} - \alpha_{c-2}, 1/\tau), 3 \leq c \leq C
$$

where τ denotes the drift parameter that controls the degree of smoothing over the time buckets and is assumed to have a Gamma hyperprior distribution:

$$
\tau \sim Gamma(a_{\tau}, b_{\tau})
$$

The precision of the individual patient responses $(1/\sigma^2)$ is also assumed to have a Gamma hyperprior distribution:

$$
1/\sigma^2 \sim Gamma(a_{\sigma^2}, b_{\sigma^2})
$$

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val posterior probability that the difference in means is less than zero
- treat_effect posterior mean of difference in means
- lower_ci lower limit of the $(1-2*alpha)*100\%$ credible interval for difference in means
- upper_ci upper limit of the (1-2*alpha)*100% credible interval for difference in means
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)

Author(s)

Dominic Magirr, Peter Jacko

Examples

trial_data <- datasim_cont(num_arms = 3, n_arm = 100, $d = c(0, 100, 250)$, theta = $rep(0.25, 3)$, lambda = $rep(0.15, 4)$, sigma = 1, trend = "linear")

timemachine_cont(data = trial_data, arm = 3)

Index

datasim_bin, [3](#page-2-0) datasim_bin_2, [6](#page-5-0) datasim_cont, [10](#page-9-0) fixmodel_bin, [14](#page-13-0) fixmodel_cal_bin, [16](#page-15-0) fixmodel_cal_cont, [17](#page-16-0) fixmodel_cont, [19](#page-18-0) fixmodel_lin_cont, [21](#page-20-0) gam_cont, [22](#page-21-0) get_ss_matrix, [23](#page-22-0) inv_u_trend, [24](#page-23-0) linear_trend, [25](#page-24-0) MAPprior_bin, [28](#page-27-0) MAPprior_cont, [31](#page-30-0) MAPpriorNew_cont, [26](#page-25-0) mixmodel_AR1_cal_cont, [34](#page-33-0) mixmodel_AR1_cont, [35](#page-34-0) mixmodel_cal_cont, [37](#page-36-0) mixmodel_cont, [38](#page-37-0) mixmodel_int_cal_cont, [39](#page-38-0) mixmodel_int_cont, [41](#page-40-0) piecewise_cal_cont, [42](#page-41-0) piecewise_cont, [44](#page-43-0) plot_trial, [45](#page-44-0) poolmodel_bin, [46](#page-45-0) poolmodel_cont, [47](#page-46-0) seasonal_trend, [48](#page-47-0) sepmodel_adj_bin, [49](#page-48-0) sepmodel_adj_cont, [50](#page-49-0) sepmodel_bin, [52](#page-51-0) sepmodel_cont, [53](#page-52-0) sim_study, [54](#page-53-0) sim_study_par, [56](#page-55-0) splines_cal_cont, [58](#page-57-0)

splines_cont, [59](#page-58-0) sw_trend, [61](#page-60-0)

timemachine_bin, [61](#page-60-0) timemachine_cont, [64](#page-63-0)