Package: NCC (via r-universe)

September 8, 2024

```
Title Simulation and Analysis of Platform Trials with Non-Concurrent
     Controls
Version 1.0
Author Pavla Krotka [aut, cre]
     (<https://orcid.org/0000-0001-5727-4270>), Marta Bofill Roig
     [aut, ths] (<https://orcid.org/0000-0002-4400-7541>), Katharina
     Hees [aut], Peter Jacko [aut], Dominic Magirr [aut], Martin
     Posch [ctb] (<a href="https://orcid.org/0000-0001-8499-8573">https://orcid.org/0000-0001-8499-8573</a>)
Maintainer Pavla Krotka <pavla.krotka@meduniwien.ac.at>
Description Design and analysis of flexible platform trials with
     non-concurrent controls. Functions for data generation,
     analysis, visualization and running simulation studies are
     provided. The implemented analysis methods are described in:
     Bofill Roig et al. (2022) <doi:10.1186/s12874-022-01683-w>,
     Saville et al. (2022) <doi:10.1177/17407745221112013> and
     Schmidli et al. (2014) <doi:10.1111/biom.12242>.
URL https://pavlakrotka.github.io/NCC/,
     https://github.com/pavlakrotka/NCC
License MIT + file LICENSE
Encoding UTF-8
LazyData false
Imports rlang, stats, RBesT, rjags, ggplot2, lmerTest, parallel,
     doParallel, parallelly, foreach, iterators, spaMM, mgcv,
     splines
SystemRequirements JAGS 4.x.y
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2
Suggests rmarkdown, knitr
VignetteBuilder knitr
```

BugReports https://github.com/pavlakrotka/NCC/issues

2 Contents

RemoteUrl https://pavlakrotka.r-universe.dev

RemoteRef HEAD

RemoteSha 3638e6abab260efc64d97270e4640e61da9fe9a0

Contents

Index

datasim_bin	3
datasim_bin_2	6
datasim_cont	10
fixmodel_bin	14
fixmodel_cal_bin	16
fixmodel_cal_cont	17
fixmodel_cont	19
fixmodel_lin_cont	21
gam_cont	22
get_ss_matrix	23
inv_u_trend	
linear_trend	25
MAPpriorNew_cont	
MAPprior_bin	
MAPprior_cont	
mixmodel_AR1_cal_cont	
mixmodel_AR1_cont	
mixmodel_cal_cont	
mixmodel_cont	
mixmodel_int_cal_cont	
mixmodel_int_cont	
piecewise_cal_cont	
piecewise_cont	
plot_trial	
poolmodel_bin	
poolmodel_cont	
seasonal_trend	
sepmodel_adj_bin	
sepmodel_adj_cont	
sepmodel_bin	
sepmodel_cont	
sim_study	
sim_study_par	
splines_cal_cont	
splines_cont	
sw_trend	
timemachine_bin	
timemachine_cont	64

67

datasim_bin 3

datasim_bin	Simulate binary data from a platform trial with a shared control arm and a given number of experimental treatment arms entering at given time points
	time points

Description

This function simulates data from a platform trial with a given number of experimental treatment arms entering at given time points and a shared control arm. The primary endpoint is a binary endpoint. The user specifies the timing of adding arms in terms of patients recruited to the trial so far and the sample size per experimental treatment arm.

Usage

```
datasim_bin(
  num_arms,
  n_arm,
  d,
  period_blocks = 2,
  p0,
  OR,
  lambda,
  trend,
  N_peak,
  n_wave,
  trend_mean = 0,
  trend_var = 0.5,
  full = FALSE,
  check = TRUE
)
```

Arguments

num_arms	;	Integer. Number of experimental treatment arms in the trial.
n_arm		Integer. Sample size per experimental treatment arm (assumed equal).
d		Integer vector with timings of adding new arms in terms of number of patients recruited to the trial so far. The first entry must be 0, so that the trial starts with at least one experimental treatment arm, and the entries must be non-decreasing. The vector length equals num_arms.
period_b	locks	Integer. Number to define the size of the blocks for the block randomization. The block size in each period equals period_blockstimes the number of active arms in the period (see Details). Default=2.
р0		Double. Response probability in the control arm.
OR		Double vector with treatment effects in terms of odds ratios for each experimental treatment arm compared to control. The elements of the vector (odds

4 datasim bin

ratios) are ordered by the entry time of the experimental treatment arms (e.g., the first entry in the vector corresponds to the odds ratio of the first experimental treatment arm). The vector length equals num_arms.

lambda Vector containing numerical entries or the string "random", indicating the strength

of the time trend in each arm ordered by the entry time of the arms (e.g., the first entry in the vector corresponds to the time trend in the control arm, second entry to the time trend in the first experimental treatment arm). The vector length equals num_arms+1, as time trend in the control is also allowed. In case of

random time trend, its strenght is generated from a normal distribution.

trend String indicating the time trend pattern ("linear", "linear_2, "stepwise", "step-

wise_2", "inv_u" or "seasonal"). See Details for more information.

N_peak Integer. Timepoint at which the inverted-u time trend switches direction in terms

of overall sample size (i.e. after how many recruited participants the trend di-

rection switches).

n_wave Integer. Number of cycles (waves) should the seasonal trend have.

trend_mean Integer. In case of random time trends, the strength of the time trend will be

generated from N(trend_mean, trend_var). Default: N(0, 0.5).

trend_var Integer. In case of random time trends, the strength of the time trend will be

generated from N(trend_mean, trend_var). Default: N(0, 0.5).

full Logical. Indicates whether the output should be in form of a data frame with

variables needed for the analysis only (FALSE) or in form of a list containing

more information (TRUE). Default=FALSE.

check Logical. Indicates whether the input parameters should be checked by the func-

tion. Default=TRUE, unless the function is called by a simulation function,

where the default is FALSE.

Details

Design assumptions:

- The simulated platform trial consists of a given number of experimental treatment arms (specified by the argument num_arms) and one control arm that is shared across the whole platform.
- Participants are indexed by entry order, assuming that at each time unit exactly one participant is recruited and the time of recruitment and observation of the response are equal.
- All participants are assumed to be eligible for all arms in the trial, i.e. the same inclusion and exclusion criteria apply to all experimental and control arms.
- Equal sample sizes (given by parameter n_arm) in all experimental treatment arms are assumed.
- The duration of the trial is divided into so-called periods, defined as time intervals bounded by distinct time points of any treatment arm entering or leaving the platform. Hence, multiple treatment arms entering or leaving at the same time point imply the start of only one additional period.
- Allocation ratio of 1:1:...:1 in each period. Furthermore, block randomization is used to assign
 patients to the active arms. Block size in each period = period_blocks* (number of active
 arms in the period).

datasim_bin 5

• If the period sample size is not a multiple of the block size, arms for the remaining participants are chosen by sampling without replacement from a vector containing the indices of active arms replicated times ceiling(remaining sample size/number of active arms).

Data generation:

The binary response y_j for patient j is generated according to:

$$g(E(y_j)) = \eta_0 + \sum_{k=1}^{K} I(k_j = k) + f(j)$$

where $g(\cdot)$ is the logit link function, and η_0 (logit function of parameter p0) and θ_k (log of the parameter OR) are the log odds in the control arm and the log odds ratio of treatment k. K is the total number of treatment arms in the trial (parameter num_arms) and k_j is an indicator of the treatment arm patient j is allocated to.

The function f(j) denotes the time trend, whose strength is indicated by λ_{k_j} (parameter lambda) and which can have the following patterns (parameter trend):

- "linear" trend starts at the beginning of the trial and the log odds increases or decreases linearly with a slope of λ , according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1}$, where N is the total sample size in the trial
- "linear_2" trend starts after the first period (i.e. there is no time trend in the first period) and the log odds increases or decreases linearly with a slope of λ , according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1}$, where N is the total sample size in the trial
- "stepwise" the log odds is constant in each period and increases or decreases by λ each time any treatment arm enters or leaves the trial (i.e. in each period), according to the function $f(j) = \lambda_{k_j} \cdot (c_j 1)$, where c_j is an index of the period patient j was enrolled in
- "stepwise_2" the log odds is constant in each period and increases or decreases by λ each time a new treatment arm is added to the trial, according to the function $f(j) = \lambda_{k_j} \cdot (w_j 1)$, where w_j is an indicator of how many treatment arms have already entered the ongoing trial, when patient j was enrolled
- "inv_u" the log odds increases up to the point N_p (parameter N_peak) and decreases afterwards, linearly with a slope of λ , according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1} (I(j \leq N_p) I(j > N_p))$, where N_p indicates the point at which the trend turns from positive to negative in terms of the sample size (note that for negative λ , the log odds ratio decreases first and increases after)
- "seasonal" the log odds increases and decreases periodically with a magnitude of λ , according to the function $f(j) = \lambda \cdot \sin(\psi \cdot 2\pi \cdot \frac{j-1}{N-1})$, where ψ indicates how many cycles should the time trend have (parameter n_wave)

Trials with no time trend can be simulated too, by setting all elements of the vector lambda to zero and choosing an arbitrary pattern.

Value

Data frame: simulated trial data (if full=FALSE, i.e. default) with the following columns:

• j - patient recruitment index

6 datasim_bin_2

- response binary response for patient j
- treatment- index of the treatment patient j was allocated to
- period index of the period patient j was recruited in

or List (if full=TRUE) containing the following elements:

- Data simulated trial data, including an additional column p with the probability used for simulating the response for patient j
- n_total total sample size in the trial
- n_arm sample size per arm (assumed equal)
- num_arms number of experimental treatment arms in the trial
- d timings of adding new arms
- SS_matrix matrix with the sample sizes per arm and per period
- period_blocks number to multiply the number of active arms with, in order to get the block size per period
- p0 response probability in the control arm
- OR odds ratios for each experimental treatment arm
- lambda strength of time trend in each arm
- time_dep_effect time dependent treatment effects for each experimental treatment arm (for computing the bias)
- trend time trend pattern

Author(s)

Pavla Krotka, Marta Bofill Roig

Examples

```
head(datasim_bin(num_arms = 3, n_arm = 100, d = c(0, 100, 250), p0 = 0.7, OR = rep(1.8, 3), lambda = rep(0.15, 4), trend="stepwise"))
```

datasim_bin_2

Simulate binary data from a platform trial with a shared control arm and a given number of experimental treatment arms entering at given time points using a user-specified sample size matrix

Description

This function simulates data from a platform trial with a given number of experimental treatment arms entering at given time points and a shared control arm. The primary endpoint is a binary endpoint. The user specifies the timing of adding arms in terms of patients recruited to the trial so far and the sample size per experimental treatment arm.

datasim_bin_2

Usage

```
datasim_bin_2(
  num_arms,
  n_arm,
  period_blocks = 2,
  p0,
  OR,
  SS_matrix = NULL,
  lambda,
  trend,
 N_peak,
  n_wave,
  trend_mean = 0,
  trend_var = 0.5,
  full = FALSE,
  check = TRUE
)
```

Arguments

d

num_arms Integer. Number of experimental treatment arms in the trial.

n_arm Integer. Sample size per experimental treatment arm (assumed equal).

Integer vector with timings of adding new arms in terms of number of patients recruited to the trial so far. The first entry must be 0, so that the trial starts with at least one experimental treatment arm, and the entries must be non-decreasing.

The vector length equals num_arms.

The block size in each period equals period_blockstimes the number of active

arms in the period (see Details). Default=2.

p0 Double. Response probability in the control arm.

OR Double vector with treatment effects in terms of odds ratios for each experi-

mental treatment arm compared to control. The elements of the vector (odds ratios) are ordered by the entry time of the experimental treatment arms (e.g., the first entry in the vector corresponds to the odds ratio of the first experimental

treatment arm). The vector length equals num_arms.

SS_matrix Matrix with sample sizes per arm (rows) and period (columns).

lambda Vector containing numerical entries or the string "random", indicating the strength

of the time trend in each arm ordered by the entry time of the arms (e.g., the first entry in the vector corresponds to the time trend in the control arm, second entry to the time trend in the first experimental treatment arm). The vector length equals num_arms+1, as time trend in the control is also allowed. In case of

random time trend, its strenght is generated from a normal distribution.

trend String indicating the time trend pattern ("linear", "linear_2, "stepwise", "step-

wise_2", "inv_u" or "seasonal"). See Details for more information.

8 datasim bin 2

N_peak Integer. Timepoint at which the inverted-u time trend switches direction in terms of overall sample size (i.e. after how many recruited participants the trend direction switches). Integer. Number of cycles (waves) should the seasonal trend have. n_wave Integer. In case of random time trends, the strength of the time trend will be trend_mean generated from N(trend_mean, trend_var). Default: N(0, 0.5). trend_var Integer. In case of random time trends, the strength of the time trend will be generated from N(trend_mean, trend_var). Default: N(0, 0.5). full Logical. Indicates whether the output should be in form of a data frame with variables needed for the analysis only (FALSE) or in form of a list containing more information (TRUE). Default=FALSE. Logical. Indicates whether the input parameters should be checked by the funccheck tion. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.

Details

Design assumptions:

- The simulated platform trial consists of a given number of experimental treatment arms (specified by the argument num_arms) and one control arm that is shared across the whole platform.
- Participants are indexed by entry order, assuming that at each time unit exactly one participant is recruited and the time of recruitment and observation of the response are equal.
- All participants are assumed to be eligible for all arms in the trial, i.e. the same inclusion and exclusion criteria apply to all experimental and control arms.
- Equal sample sizes (given by parameter n_arm) in all experimental treatment arms are assumed.
- The duration of the trial is divided into so-called periods, defined as time intervals bounded by distinct time points of any treatment arm entering or leaving the platform. Hence, multiple treatment arms entering or leaving at the same time point imply the start of only one additional period.
- Allocation ratio of 1:1:...:1 in each period. Furthermore, block randomization is used to assign patients to the active arms. Block size in each period = period_blocks* (number of active arms in the period).
- If the period sample size is not a multiple of the block size, arms for the remaining participants are chosen by sampling without replacement from a vector containing the indices of active arms replicated times ceiling(remaining sample size/number of active arms).

Data generation:

The binary response y_j for patient j is generated according to:

$$g(E(y_j)) = \eta_0 + \sum_{k=1}^{K} I(k_j = k) + f(j)$$

where $g(\cdot)$ is the logit link function, and η_0 (logit function of parameter p0) and θ_k (log of the parameter OR) are the log odds in the control arm and the log odds ratio of treatment k. K is

datasim_bin_2

the total number of treatment arms in the trial (parameter num_arms) and k_j is an indicator of the treatment arm patient j is allocated to.

The function f(j) denotes the time trend, whose strength is indicated by λ_{k_j} (parameter lambda) and which can have the following patterns (parameter trend):

- "linear" trend starts at the beginning of the trial and the log odds increases or decreases linearly with a slope of λ , according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1}$, where N is the total sample size in the trial
- "linear_2" trend starts after the first period (i.e. there is no time trend in the first period) and the log odds increases or decreases linearly with a slope of λ , according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1}$, where N is the total sample size in the trial
- "stepwise" the log odds is constant in each period and increases or decreases by λ each time any treatment arm enters or leaves the trial (i.e. in each period), according to the function $f(j) = \lambda_{k_i} \cdot (c_j 1)$, where c_j is an index of the period patient j was enrolled in
- "stepwise_2" the log odds is constant in each period and increases or decreases by λ each time a new treatment arm is added to the trial, according to the function $f(j) = \lambda_{k_j} \cdot (w_j 1)$, where w_j is an indicator of how many treatment arms have already entered the ongoing trial, when patient j was enrolled
- "inv_u" the log odds increases up to the point N_p (parameter N_peak) and decreases afterwards, linearly with a slope of λ , according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1} (I(j \leq N_p) I(j > N_p))$, where N_p indicates the point at which the trend turns from positive to negative in terms of the sample size (note that for negative λ , the log odds ratio decreases first and increases after)
- "seasonal" the log odds increases and decreases periodically with a magnitude of λ , according to the function $f(j) = \lambda \cdot \sin(\psi \cdot 2\pi \cdot \frac{j-1}{N-1})$, where ψ indicates how many cycles should the time trend have (parameter n_wave)

Trials with no time trend can be simulated too, by setting all elements of the vector lambda to zero and choosing an arbitrary pattern.

Value

Data frame: simulated trial data (if full=FALSE, i.e. default) with the following columns:

- j patient recruitment index
- response binary response for patient j
- treatment- index of the treatment patient j was allocated to
- period index of the period patient j was recruited in

or List (if full=TRUE) containing the following elements:

- Data simulated trial data, including an additional column p with the probability used for simulating the response for patient j
- n_total total sample size in the trial
- num_arms number of experimental treatment arms in the trial
- SS_matrix matrix with the sample sizes per arm and per period

• period_blocks - number to multiply the number of active arms with, in order to get the block size per period

- p0 response probability in the control arm
- OR odds ratios for each experimental treatment arm
- lambda strength of time trend in each arm
- time_dep_effect time dependent treatment effects for each experimental treatment arm (for computing the bias)
- trend time trend pattern

Author(s)

Pavla Krotka, Marta Bofill Roig

Examples

```
ss_matrix \leftarrow matrix(c(125, 125, 125, 125, NA, 250), nrow = 3, byrow = TRUE) head(datasim_bin_2(SS_matrix = ss_matrix, p0 = 0.7, OR = rep(1.8, 2), lambda = rep(0.15, 3), trend="stepwise_2"))
```

datasim_cont

Simulate continuous data from a platform trial with a shared control arm and a given number of experimental treatment arms entering at given time points

Description

This function simulates data from a platform trial with a given number of experimental treatment arms entering at given time points and a shared control arm. The primary endpoint is a continuous endpoint. The user specifies the timing of adding arms in terms of patients recruited to the trial so far and the sample size per arm.

Usage

```
datasim_cont(
  num_arms,
  n_arm,
  d,
  period_blocks = 2,
  mu0 = 0,
  theta,
  lambda,
  sigma,
  trend,
  N_peak,
```

```
n_wave,
trend_mean = 0,
trend_var = 0.5,
full = FALSE,
check = TRUE
```

Arguments

num_arms Integer. Number of experimental treatment arms in the trial.

n_arm Integer. Sample size per experimental treatment arm (assumed equal).

d Integer vector with timings of adding new arms in terms of number of patients

recruited to the trial so far. The first entry must be 0, so that the trial starts with at least one experimental treatment arm, and the entries must be non-decreasing.

The vector length equals num_arms.

period_blocks Integer. Number to define the size of the blocks for the block randomization.

The block size in each period equals period_blockstimes the number of active

arms in the period (see Details). Default=2.

mu0 Double. Response in the control arm. Default=0.

theta Double vector with treatment effects in terms of difference of means for each

experimental treatment arm compared to control. The elements of the vector (treatment effects) are ordered by the entry time of the experimental treatment arms (e.g., the first entry in the vector corresponds to the treatment effect of the

first experimental treatment arm). The vector length equals num_arms.

lambda Vector containing numerical entries or the string "random", indicating the strength

of the time trend in each arm ordered by the entry time of the arms (e.g., the first entry in the vector corresponds to the time trend in the control arm, second entry to the time trend in the first experimental treatment arm). The vector length equals num_arms+1, as time trend in the control is also allowed. In case of

random time trend, its strenght is generated from a normal distribution.

sigma Double. Standard deviation of the responses.

trend String indicating the time trend pattern ("linear", "linear_2, "stepwise", "step-

wise_2", "inv_u" or "seasonal"). See Details for more information.

N_peak Integer. Timepoint at which the inverted-u time trend switches direction in terms of overall sample size (i.e. after how many recruited participants the trend di

of overall sample size (i.e. after how many recruited participants the trend di-

rection switches).

n_wave Integer. Number of cycles (waves) should the seasonal trend have.

trend_mean Integer. In case of random time trends, the strength of the time trend will be

generated from N(trend_mean, trend_var). Default: N(0, 0.5).

trend_var Integer. In case of random time trends, the strength of the time trend will be

generated from $N(\text{trend_mean}, \text{trend_var})$. Default: N(0, 0.5).

full Logical. Indicates whether the output should be in form of a data frame with

variables needed for the analysis only (FALSE) or in form of a list containing

more information (TRUE). Default=FALSE.

check

Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.

Details

Design assumptions:

• The simulated platform trial consists of a given number of experimental treatment arms (specified by the argument num_arms) and one control arm that is shared across the whole platform.

- Participants are indexed by entry order, assuming that at each time unit exactly one participant
 is recruited and the time of recruitment and observation of the response are equal.
- All participants are assumed to be eligible for all arms in the trial, i.e. the same inclusion and exclusion criteria apply to all experimental and control arms.
- Equal sample sizes (given by parameter n_arm) in all experimental treatment arms are assumed.
- The duration of a platform trial is divided into so-called periods, defined as time intervals
 bounded by distinct time points of any treatment arm entering or leaving the platform. Hence,
 multiple treatment arms entering or leaving at the same time point imply the start of only one
 additional period.
- Allocation ratio of 1:1:...:1 in each period. Furthermore, block randomization is used to assign
 patients to the active arms. Block size in each period = period_blocks* (number of active
 arms in the period).
- If the period sample size is not a multiple of the block size, arms for the remaining participants are chosen by sampling without replacement from a vector containing the indices of active arms replicated times ceiling(remaining sample size/number of active arms).

Data generation:

The continuous response y_j for patient j is generated according to:

$$E(y_j) = \eta_0 + \sum_{k=1}^{K} I(k_j = k) + f(j)$$

where η_0 (parameter mu0) and θ_k (parameter theta) are the response in the control arm and the effect of treatment k. K is the total number of treatment arms in the trial (parameter num_arms) and k_j is an indicator of the treatment arm patient j is allocated to.

The function f(j) denotes the time trend, whose strength is indicated by λ_{k_j} (parameter lambda) and which can have the following patterns (parameter trend):

- "linear" trend starts at the beginning of the trial and the mean response increases or decreases linearly with a slope of λ , according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1}$, where N is the total sample size in the trial
- "linear_2" trend starts after the first period (i.e. there is no time trend in the first period) and the mean response increases or decreases linearly with a slope of λ , according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1}$, where N is the total sample size in the trial

• "stepwise" - the mean response is constant in each period and increases or decreases by λ each time any treatment arm enters or leaves the trial (i.e. in each period), according to the function $f(j) = \lambda_{k_j} \cdot (c_j - 1)$, where c_j is an index of the period patient j was enrolled in

- "stepwise_2" the mean response is constant in each period and increases or decreases by λ each time a new treatment arm is added to the trial, according to the function $f(j) = \lambda_{k_j} \cdot (w_j 1)$, where w_j is an indicator of how many treatment arms have already entered the ongoing trial, when patient j was enrolled
- "inv_u" the mean response increases up to the point N_p (parameter N_peak) and decreases afterwards, linearly with a slope of λ , according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1}(I(j \le N_p) I(j > N_p))$, where N_p indicates the point at which the trend turns from positive to negative in terms of the sample size (note that for negative λ , the mean response decreases first and increases after)
- "seasonal" the mean response increases and decreases periodically with a magnitude of λ , according to the function $f(j) = \lambda \cdot \sin(\psi \cdot 2\pi \cdot \frac{j-1}{N-1})$, where ψ indicates how many cycles should the time trend have (parameter n_wave)

Trials with no time trend can be simulated too, by setting all elements of the vector lambda to zero and choosing an arbitrary pattern.

Value

Data frame: simulated trial data (if full=FALSE, i.e. default) with the following columns:

- j patient recruitment index
- response continuous response for patient j
- treatment- index of the treatment patient j was allocated to
- period index of the period patient j was recruited in

or List (if full=TRUE) containing the following elements:

- Data simulated trial data, including an additional column means with the theoretical means used for the simulation of the response for patient j
- n_total total sample size in the trial
- n_arm sample size per arm (assumed equal)
- num_arms number of experimental treatment arms in the trial
- d timings of adding new arms
- SS_matrix matrix with the sample sizes per arm and per period
- period_blocks number to multiply the number of active arms with, in order to get the block size per period
- mu0 response in the control arm
- theta treatment effects for each experimental treatment arm
- lambda strength of time trend in each arm
- time_dep_effect time dependent treatment effects for each experimental treatment arm (for computing the bias)
- sigma standard deviation of the responses
- trend time trend pattern

14 fixmodel_bin

Author(s)

Pavla Krotka, Marta Bofill Roig

Examples

```
head(datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250), theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear"))
```

fixmodel_bin Frequentist logistic regression model analysis for binary data adjusting for periods

Description

This function performs logistic regression taking into account all trial data until the arm under study leaves the trial and adjusting for periods as factors.

Usage

```
fixmodel_bin(data, arm, alpha = 0.025, ncc = TRUE, check = TRUE, ...)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_bin() function. Must contain columns named 'treatment', 'response' and 'period'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
ncc	Logical. Indicates whether to include non-concurrent data into the analysis. Default=TRUE.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

Details

The model-based analysis adjusts for the time effect by including the factor period (defined as a time interval bounded by any treatment arm entering or leaving the platform). The time is then modelled as a step-function with jumps at the beginning of each period. Denoting by y_j the response probability for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

fixmodel_bin 15

$$g(E(y_j)) = \eta_0 + \sum_{k \in \mathcal{K}_M} \theta_k \cdot I(k_j = k) + \sum_{s=2}^{S_M} \tau_s \cdot I(t_j \in T_{S_s})$$

where $g(\cdot)$ denotes the logit link function and η_0 is the log odds in the control arm in the first period; θ_k represents the log odds ratio of treatment k and control for $k \in \mathcal{K}_M$, where \mathcal{K}_M is the set of treatments that were active in the trial during periods prior or up to the time when the investigated treatment arm left the trial; τ_s indicates the stepwise period effect in terms of the log odds ratio between periods 1 and s ($s=2,\ldots,S_M$), where S_M denotes the period, in which the investigated treatment arm left the trial.

If the data consists of only one period (e.g. in case of a multi-arm trial), the period in not used as covariate.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the log-odds ratio
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

References

On model-based time trend adjustments in platform trials with non-concurrent controls. Bofill Roig, M., Krotka, P., et al. BMC Medical Research Methodology 22.1 (2022): 1-16.

Examples

```
trial_data <- datasim_bin(num_arms = 3, n_arm = 100, d = c(0, 100, 250), p0 = 0.7, OR = rep(1.8, 3), lambda = rep(0.15, 4), trend="stepwise") fixmodel_bin(data = trial_data, arm = 3)
```

16 fixmodel_cal_bin

fixmodel_cal_bin	Frequentist logistic regression model analysis for binary data adjusting for calendar time units

Description

This function performs logistic regression taking into account all trial data until the arm under study leaves the trial and adjusting for calendar time units as factors.

Usage

```
fixmodel_cal_bin(
  data,
  arm,
  alpha = 0.025,
  unit_size = 25,
  ncc = TRUE,
  check = TRUE,
  ...
)
```

Arguments

da	ata	Data frame with trial data, e.g. result from the datasim_bin() function. Must contain columns named 'treatment' and 'response'.
ar	^m	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
a]	lpha	Double. Significance level (one-sided). Default=0.025.
ur	nit_size	Integer. Number of patients per calendar time unit. Default=25.
no	cc	Logical. Indicates whether to include non-concurrent data into the analysis. Default=TRUE.
cł	neck	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	•	Further arguments passed by wrapper functions when running simulations.

Details

The model-based analysis adjusts for the time effect by including the factor calendar time unit (defined as time units of fixed length, defined by $unit_size$). The time is then modelled as a step-function with jumps at the beginning of each calendar time unit. Denoting by y_j the response probability for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

fixmodel_cal_cont 17

$$g(E(y_j)) = \eta_0 + \sum_{k \in \mathcal{K}_M} \theta_k \cdot I(k_j = k) + \sum_{c=2}^{C_M} \tau_c \cdot I(t_j \in T_{C_c})$$

where $g(\cdot)$ denotes the logit link function and η_0 is the log odds in the control arm in the first calendar time unit; θ_k represents the log odds ratio of treatment k and control for $k \in \mathcal{K}_M$, where \mathcal{K}_M is the set of treatments that were active in the trial during calendar time units prior or up to the time when the investigated treatment arm left the trial; τ_c indicates the stepwise calendar time effect in terms of the log odds ratio between calendar time units 1 and c ($c = 2, \ldots, C_M$), where C_M denotes the calendar time unit, in which the investigated treatment arm left the trial.

If the data consists of only one calendar time unit, the calendar time unit in not used as covariate.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the log-odds ratio
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_bin(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
p0 = 0.7, OR = rep(1.8, 3), lambda = rep(0.15, 4), trend="stepwise")
fixmodel_cal_bin(data = trial_data, arm = 3)</pre>
```

fixmodel_cal_cont

Frequentist linear regression model analysis for continuous data adjusting for calendar time units

Description

This function performs linear regression taking into account all trial data until the arm under study leaves the trial and adjusting for calendar time units as factors.

18 fixmodel_cal_cont

Usage

```
fixmodel_cal_cont(
  data,
  arm,
  alpha = 0.025,
  unit_size = 25,
  ncc = TRUE,
  check = TRUE,
  ...
)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_cont() function. Must contain columns named 'treatment' and 'response'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
unit_size	Integer. Number of patients per calendar time unit. Default=25.
ncc	Logical. Indicates whether to include non-concurrent data into the analysis. Default=TRUE.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

Details

The model-based analysis adjusts for the time effect by including the factor calendar time unit (defined as time units of fixed length, defined by $unit_size$). The time is then modelled as a step-function with jumps at the beginning of each calendar time unit. Denoting by y_j the continuous response for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

$$E(y_j) = \eta_0 + \sum_{k \in \mathcal{K}_M} \theta_k \cdot I(k_j = k) + \sum_{c=2}^{C_M} \tau_c \cdot I(t_j \in T_{C_c})$$

where η_0 is the response in the control arm in the first calendar time unit; θ_k represents the effect of treatment k compared to control for $k \in \mathcal{K}_M$, where \mathcal{K}_M is the set of treatments that were active in the trial during calendar time units prior or up to the time when the investigated treatment arm left the trial; τ_c indicates the stepwise calendar time effect between calendar time units 1 and c ($c=2,\ldots,C_M$), where C_M denotes the calendar time unit, in which the investigated treatment arm left the trial.

If the data consists of only one calendar time unit, the calendar time unit in not used as covariate.

fixmodel_cont 19

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
 trial_data \leftarrow datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250), \\ theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear") \\ fixmodel_cal_cont(data = trial_data, arm = 3)
```

fixmodel_cont

Frequentist linear regression model analysis for continuous data adjusting for periods

Description

This function performs linear regression taking into account all trial data until the arm under study leaves the trial and adjusting for periods as factors.

Usage

```
fixmodel_cont(data, arm, alpha = 0.025, ncc = TRUE, check = TRUE, ...)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_cont() function. Must contain columns named 'treatment', 'response' and 'period'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
ncc	Logical. Indicates whether to include non-concurrent data into the analysis. Default=TRUE.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

20 fixmodel_cont

Details

The model-based analysis adjusts for the time effect by including the factor period (defined as a time interval bounded by any treatment arm entering or leaving the platform). The time is then modelled as a step-function with jumps at the beginning of each period. Denoting by y_j the continuous response for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

$$E(y_j) = \eta_0 + \sum_{k \in \mathcal{K}_M} \theta_k \cdot I(k_j = k) + \sum_{s=2}^{S_M} \tau_s \cdot I(t_j \in T_{S_s})$$

where η_0 is the response in the control arm in the first period; θ_k represents the effect of treatment k compared to control for $k \in \mathcal{K}_M$, where \mathcal{K}_M is the set of treatments that were active in the trial during periods prior or up to the time when the investigated treatment arm left the trial; τ_s indicates the stepwise period effect between periods 1 and s ($s=2,\ldots,S_M$), where S_M denotes the period, in which the investigated treatment arm left the trial.

If the data consists of only one period (e.g. in case of a multi-arm trial), the period in not used as covariate.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

References

On model-based time trend adjustments in platform trials with non-concurrent controls. Bofill Roig, M., Krotka, P., et al. BMC Medical Research Methodology 22.1 (2022): 1-16.

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
fixmodel_cont(data = trial_data, arm = 3)</pre>
```

fixmodel_lin_cont 21

fixmodel_lin_cont	Frequentist linear regression model analysis for continuous data with linear adjustment for time

Description

This function performs linear regression taking into account all trial data until the arm under study leaves the trial and adjusting for time as a continuous covariate

Usage

```
fixmodel_lin_cont(data, arm, alpha = 0.025, ncc = TRUE, check = TRUE, ...)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_cont() function. Must contain columns named 'treatment', 'response' and 'period'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
ncc	Logical. Indicates whether to include non-concurrent data into the analysis. Default=TRUE.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

References

On model-based time trend adjustments in platform trials with non-concurrent controls. Bofill Roig, M., Krotka, P., et al. BMC Medical Research Methodology 22.1 (2022): 1-16.

22 gam_cont

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
fixmodel_lin_cont(data = trial_data, arm = 3)</pre>
```

gam_cont

Generalized additive model analysis for continuous data

Description

This function performs analysis using a generalized additive model taking into account all trial data until the arm under study leaves the trial and smoothing over the patient entry index.

Usage

```
gam_cont(
  data,
  arm,
  alpha = 0.025,
  ci = FALSE,
  smoothing_basis = "tp",
  basis_dim = -1,
  gam_method = "GCV.Cp",
  check = TRUE,
  ...
)
```

Arguments

data Data frame with trial data, e.g. result from the datasim_cont() function. Must

contain columns named 'treatment', 'response', 'period' and 'j'.

arm Integer. Index of the treatment arm under study to perform inference on (vector

of length 1). This arm is compared to the control group.

alpha Double. Significance level (one-sided). Default=0.025.

ci Logical. Indicates whether confidence intervals should be computed. Default=FALSE.

smoothing_basis

String indicating the (penalized) smoothing basis to use. Default="tp" for thin plate regression spline. Available strings are 'tp', 'ts', 'ds', 'cr', 'cs', 'cc', 'sos', 'ps', 'cp', 're', 'mrf', 'gp', and 'so'. For more information see https://stat.ethz.ch/R-

manual/R-devel/library/mgcv/html/smooth.terms.html.

basis_dim Integer. The dimension of the basis used to represent the smooth term. The

default depends on the number of variables that the smooth is a function of. Default=-1. For more information see the description of the parameter 'k' in

https://stat.ethz.ch/R-manual/R-devel/library/mgcv/html/s.html.

get_ss_matrix 23

gam_method	String indicating the smoothing parameter estimation method. Default="GCV.Cp". Available strings are 'GCV.Cp', 'GACV.Cp', 'REML', 'P-REML', 'ML', and 'P-ML'. For more information see the description of the parameter 'method' in https://stat.ethz.ch/R-manual/R-devel/library/mgcv/html/gam.html.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
 trial_data \leftarrow datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250), \\ theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear") \\ gam_cont(data = trial_data, arm = 3, ci = TRUE)
```

get_ss_matrix Sample size matrix for a platform trial with a given number of treatment arms

Description

This function computes the matrix with sample sizes per arm and period. It is used in the functions datasim_bin() and datasim_cont().

Usage

```
get_ss_matrix(num_arms, n_arm, d)
```

24 inv_u_trend

Arguments

num_arms Integer. Number of experimental treatment arms in the trial.

n_arm Integer. Sample size per experimental treatment arm.

d Integer vector with timings of adding new arms in terms of number of patients

recruited to the trial so far. The first entry must be 0, so that the trial starts with at least one experimental treatment arm, and the entries must be non-decreasing.

The vector length equals num_arms.

Value

Sample size matrix, consisting of the sample size per arm and per period, where the arms are represented in the rows (with the control arm in the first row and the experimental arms coming after ordered by entry time) and the periods are represented in the columns.

Author(s)

Pavla Krotka

Examples

```
get_ss_matrix(num_arms = 3, n_arm = 100, d = c(0, 100, 250))
```

inv_u_trend

Generation of an inverted-u trend

Description

This function generates a time trend for given time points in the trial according to an inverted-u function.

Usage

```
inv_u_trend(j, lambda, N_peak, n_total, trend_mean, trend_var)
```

Arguments

TO'	•	1 1 1 .1	. 1	1 111	. 1
 Time	points for	Which the	frend c	hould be	generated

lambda Strength of time trend.

N_peak Point at which the time trend switches direction in terms of overall sample size.

n_total Total sample size in the trial.

trend_mean Integer. In case of random time trends, the strength of the time trend will be

generated from N(trend_mean, trend_var).

trend_var Integer. In case of random time trends, the strength of the time trend will be

generated from N(trend_mean, trend_var).

linear_trend 25

Details

The time trend is generated according to the function

$$f(j) = \lambda \cdot \frac{j-1}{N-1} \text{ for } j \le N_p$$

$$f(j) = -\lambda \cdot \frac{j-N_p}{N-1} + \lambda \cdot \frac{N_p-1}{N-1} \text{ for } j > N_p$$

where N is the total sample size (parameter n_total) and N_p (parameter N_peak) indicates the point at which the trend switches direction.

Value

Time trend for time points j.

Author(s)

Marta Bofill Roig, Pavla Krotka

linear_trend

Generation of a linear trend that starts in a given period

Description

This function generates a time trend for given time points in the trial according to a linear function.

Usage

linear_trend(j, lambda, sample_size, trend_mean, trend_var)

Arguments

j Time points for which the trend should be generated.

Strength of time trend.

sample_size Vector of dimension 2, indicating sample size in the trial period until the time

trend starts and the remaining sample size.

trend_mean Integer. In case of random time trends, the strength of the time trend will be

generated from N(trend_mean, trend_var).

trend_var Integer. In case of random time trends, the strength of the time trend will be

generated from N(trend_mean, trend_var).

Details

The time trend is generated according to the function $f(j) = \lambda \cdot \frac{j-1}{N-1}$, where N is the total sample size.

26 MAPpriorNew_cont

Value

Time trend for time points j.

Author(s)

Marta Bofill Roig, Pavla Krotka

MAPpriorNew_cont

Analysis for continuous data using the MAP Prior approach

Description

This function performs analysis of continuous data using the Meta-Analytic-Predictive (MAP) Prior approach. The method borrows data from non-concurrent controls to obtain the prior distribution for the control response in the concurrent periods.

Usage

```
MAPpriorNew_cont(
  data,
  arm,
  alpha = 0.025,
  opt = 2,
  prior_prec_tau = 4,
  prior_prec_eta = 0.001,
  n_samples = 1000,
  robustify = TRUE,
  weight = 0.1,
  check = TRUE,
  ...
)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_bin() function. Must contain columns named 'treatment', 'response' and 'period'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Decision boundary (one-sided). Default=0.025
opt	Integer (1 or 2). If opt==1, all former periods are used as one source; if opt==2, periods get separately included into the final analysis. Default=2.
prior_prec_tau	Double. Precision parameter $(1/\sigma_{\tau}^2)$ of the half normal hyperprior, the prior for the between study heterogeneity. Default=4.
prior_prec_eta	Double. Precision parameter $(1/\sigma_\eta^2)$ of the normal hyperprior, the prior for the hyperparameter mean of the control mean. Default=0.001.

MAPpriorNew_cont 27

or
or 1.
c- n,

Details

The MAP approach derives the prior distribution for the control response in the concurrent periods by combining the control information from the non-concurrent periods with a non-informative prior.

The model for the continuous response y_{js} for the control patient j in the non-concurrent period s is defined as follows:

$$E(y_{js}) = \eta_s$$

where η_s represents the control mean in the non-concurrent period s.

The means for the non-concurrent controls in period s are assumed to have a normal prior distribution with mean μ_{η} and variance τ^2 :

$$\eta_s \sim \mathcal{N}(\mu_\eta, \tau^2)$$

For the hyperparameters μ_{η} and τ , normal and half-normal hyperprior distributions are assumed, with mean 0 and variances σ_{η}^2 and σ_{τ}^2 , respectively:

$$\mu_{\eta} \sim \mathcal{N}(0, \sigma_{\eta}^2)$$

$$\tau \sim HalfNormal(0,\sigma_{\tau}^2)$$

The MAP prior distribution $p_{MAP}(\eta_{CC})$ for the control response in the concurrent periods is then obtained as the posterior distribution of the parameters η_s from the above specified model.

If robustify=TRUE, the MAP prior is robustified by adding a weakly-informative mixture component $p_{\mathrm{non-inf}}$, leading to a robustified MAP prior distribution:

$$p_{rMAP}(\eta_{CC}) = (1 - w) \cdot p_{MAP}(\eta_{CC}) + w \cdot p_{\text{non-inf}}(\eta_{CC})$$

where w (parameter weight) may be interpreted as the degree of skepticism towards borrowing strength.

In this function, the argument alpha corresponds to $1-\gamma$, where γ is the decision boundary. Specifically, the posterior probability of the difference distribution under the null hypothesis is such that: $P(\mu_{treatment} - \mu_{control} > 0) \ge 1$ -alpha. In case of a non-informative prior this coincides with the frequentist type I error.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val posterior probability that the difference in means is less than zero
- treat_effect posterior mean of difference in means
- lower_ci lower limit of the (1-2*alpha)*100% credible interval for difference in means
- upper_ci upper limit of the (1-2*alpha)*100% credible interval for difference in means
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)

Author(s)

Marta Bofill Roig, Katharina Hees

References

Robust meta-analytic-predictive priors in clinical trials with historical control information. Schmidli, H., et al. Biometrics 70.4 (2014): 1023-1032.

Applying Meta-Analytic-Predictive Priors with the R Bayesian Evidence Synthesis Tools. Weber, S., et al. Journal of Statistical Software 100.19 (2021): 1548-7660.

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250), theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "stepwise") MAPpriorNew_cont(data = trial_data, arm = 3)
```

MAPprior_bin

Analysis for binary data using the MAP Prior approach

Description

This function performs analysis of binary data using the Meta-Analytic-Predictive (MAP) Prior approach. The method borrows data from non-concurrent controls to obtain the prior distribution for the control response in the concurrent periods.

MAPprior_bin 29

Usage

```
MAPprior_bin(
  data,
  arm,
  alpha = 0.025,
  opt = 2,
  prior_prec_tau = 4,
  prior_prec_eta = 0.001,
  n_samples = 1000,
  n_chains = 4,
  n_iter = 4000,
  n_adapt = 1000,
  robustify = TRUE,
  weight = 0.1,
  check = TRUE,
  ...
)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_bin() function. Must contain columns named 'treatment', 'response' and 'period'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Decision boundary (one-sided). Default=0.025
opt	Integer (1 or 2). If opt==1, all former periods are used as one source; if opt==2, periods get separately included into the final analysis. Default=2.
prior_prec_tau	Double. Precision parameter $(1/\sigma_{\tau}^2)$ of the half normal hyperprior, the prior for the between study heterogeneity. Default=4.
prior_prec_eta	Double. Precision parameter $(1/\sigma_{\eta}^2)$ of the normal hyperprior, the prior for the hyperparameter mean of the control log-odds. Default=0.001.
n_samples	Integer. Number of how many random samples will get drawn for the calculation of the posterior mean, the p-value and the CI's. Default=1000.
n_chains	Integer. Number of parallel chains for the rjags model. Default=4.
n_iter	Integer. Number of iterations to monitor of the jags.model. Needed for coda.samples. Default=4000.
n_adapt	Integer. Number of iterations for adaptation, an initial sampling phase during which the samplers adapt their behavior to maximize their efficiency. Needed for jags.model. Default=1000.
robustify	Logical. Indicates whether a robust prior is to be used. If TRUE, a mixture prior is considered combining a MAP prior and a weakly non-informative component prior. Default=TRUE.
weight	Double. Weight given to the non-informative component (0 < weight < 1) for the robustification of the MAP prior according to Schmidli (2014). Default=0.1.

check Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function,

where the default is FALSE.

... Further arguments passed by wrapper functions when running simulations.

Details

The MAP approach derives the prior distribution for the control response in the concurrent periods by combining the control information from the non-concurrent periods with a non-informative prior.

The model for the binary response y_{js} for the control patient j in the non-concurrent period s is defined as follows:

$$g(E(y_{is})) = \eta_s$$

where $g(\cdot)$ denotes the logit link function and η_s represents the control log odds in the non-concurrent period s.

The log odds for the non-concurrent controls in period s are assumed to have a normal prior distribution with mean μ_{η} and variance τ^2 :

$$\eta_s \sim \mathcal{N}(\mu_{\eta}, \tau^2)$$

For the hyperparameters μ_{η} and τ , normal and half-normal hyperprior distributions are assumed, with mean 0 and variances σ_{η}^2 and σ_{τ}^2 , respectively:

$$\mu_{\eta} \sim \mathcal{N}(0, \sigma_{\eta}^2)$$

$$\tau \sim HalfNormal(0,\sigma_{\tau}^2)$$

The MAP prior distribution $p_{MAP}(\eta_{CC})$ for the control response in the concurrent periods is then obtained as the posterior distribution of the parameters η_s from the above specified model.

If robustify=TRUE, the MAP prior is robustified by adding a weakly-informative mixture component $p_{\text{non-inf}}$, leading to a robustified MAP prior distribution:

$$p_{rMAP}(\eta_{CC}) = (1 - w) \cdot p_{MAP}(\eta_{CC}) + w \cdot p_{\text{non-inf}}(\eta_{CC})$$

where w (parameter weight) may be interpreted as the degree of skepticism towards borrowing strength.

In this function, the argument alpha corresponds to $1-\gamma$, where γ is the decision boundary. Specifically, the posterior probability of the difference distribution under the null hypothesis is such that: $P(p_{treatment}-p_{control}>0)\geq 1-$ alpha. In case of a non-informative prior this coincides with the frequentist type I error.

MAPprior_cont 31

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val posterior probability that the log-odds ratio is less than zero
- treat_effect posterior mean of log-odds ratio
- lower_ci lower limit of the (1-2*alpha)*100% credible interval for log-odds ratio
- upper_ci upper limit of the (1-2*alpha)*100% credible interval for log-odds ratio
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)

Author(s)

Katharina Hees

References

Robust meta-analytic-predictive priors in clinical trials with historical control information. Schmidli, H., et al. Biometrics 70.4 (2014): 1023-1032.

Applying Meta-Analytic-Predictive Priors with the R Bayesian Evidence Synthesis Tools. Weber, S., et al. Journal of Statistical Software 100.19 (2021): 1548-7660.

Examples

```
trial_data <- datasim_bin(num_arms = 3, n_arm = 100, d = c(0, 100, 250), p0 = 0.7, OR = rep(1.8, 3), lambda = rep(0.15, 4), trend="stepwise")

MAPprior_bin(data = trial_data, arm = 3)
```

MAPprior_cont

Analysis for continuous data using the MAP Prior approach

Description

This function performs analysis of continuous data using the Meta-Analytic-Predictive (MAP) Prior approach. The method borrows data from non-concurrent controls to obtain the prior distribution for the control response in the concurrent periods.

Usage

```
MAPprior_cont(
  data,
  arm,
  alpha = 0.025,
  opt = 2,
  prior_prec_tau = 4,
```

32 MAPprior_cont

```
prior_prec_eta = 0.001,
n_samples = 1000,
n_chains = 4,
n_iter = 4000,
n_adapt = 1000,
robustify = TRUE,
weight = 0.1,
check = TRUE,
...
)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_bin() function. Must contain columns named 'treatment', 'response' and 'period'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Decision boundary (one-sided). Default=0.025
opt	Integer (1 or 2). If opt==1, all former periods are used as one source; if opt==2, periods get separately included into the final analysis. Default=2.
prior_prec_tau	Double. Precision parameter $(1/\sigma_{\tau}^2)$ of the half normal hyperprior, the prior for the between study heterogeneity. Default=4.
prior_prec_eta	Double. Precision parameter $(1/\sigma_\eta^2)$ of the normal hyperprior, the prior for the hyperparameter mean of the control mean. Default=0.001.
n_samples	Integer. Number of how many random samples will get drawn for the calculation of the posterior mean, the p-value and the CI's. Default=1000.
n_chains	Integer. Number of parallel chains for the rjags model. Default=4.
n_iter	Integer. Number of iterations to monitor of the jags.model. Needed for coda.samples. Default=4000.
n_adapt	Integer. Number of iterations for adaptation, an initial sampling phase during which the samplers adapt their behavior to maximize their efficiency. Needed for jags.model. Default=1000.
robustify	Logical. Indicates whether a robust prior is to be used. If TRUE, a mixture prior is considered combining a MAP prior and a weakly non-informative component prior. Default=TRUE.
weight	Double. Weight given to the non-informative component $(0 < \text{weight} < 1)$ for the robustification of the MAP prior according to Schmidli (2014). Default=0.1.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.

Further arguments passed by wrapper functions when running simulations.

MAPprior_cont 33

Details

The MAP approach derives the prior distribution for the control response in the concurrent periods by combining the control information from the non-concurrent periods with a non-informative prior.

The model for the continuous response y_{js} for the control patient j in the non-concurrent period s is defined as follows:

$$E(y_{is}) = \eta_s$$

where η_s represents the control mean in the non-concurrent period s.

The means for the non-concurrent controls in period s are assumed to have a normal prior distribution with mean μ_n and variance τ^2 :

$$\eta_s \sim \mathcal{N}(\mu_\eta, \tau^2)$$

For the hyperparameters μ_{η} and τ , normal and half-normal hyperprior distributions are assumed, with mean 0 and variances σ_{η}^2 and σ_{τ}^2 , respectively:

$$\mu_{\eta} \sim \mathcal{N}(0, \sigma_{\eta}^2)$$

$$\tau \sim HalfNormal(0, \sigma_{\tau}^2)$$

The MAP prior distribution $p_{MAP}(\eta_{CC})$ for the control response in the concurrent periods is then obtained as the posterior distribution of the parameters η_s from the above specified model.

If robustify=TRUE, the MAP prior is robustified by adding a weakly-informative mixture component $p_{\text{non-inf}}$, leading to a robustified MAP prior distribution:

$$p_{rMAP}(\eta_{CC}) = (1 - w) \cdot p_{MAP}(\eta_{CC}) + w \cdot p_{\text{non-inf}}(\eta_{CC})$$

where w (parameter weight) may be interpreted as the degree of skepticism towards borrowing strength.

In this function, the argument alpha corresponds to $1-\gamma$, where γ is the decision boundary. Specifically, the posterior probability of the difference distribution under the null hypothesis is such that: $P(\mu_{treatment} - \mu_{control} > 0) \ge 1$ -alpha. In case of a non-informative prior this coincides with the frequentist type I error.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val posterior probability that the difference in means is less than zero
- treat_effect posterior mean of difference in means
- lower_ci lower limit of the (1-2*alpha)*100% credible interval for difference in means
- upper_ci upper limit of the (1-2*alpha)*100% credible interval for difference in means
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)

Author(s)

Katharina Hees

References

Robust meta-analytic-predictive priors in clinical trials with historical control information. Schmidli, H., et al. Biometrics 70.4 (2014): 1023-1032.

Applying Meta-Analytic-Predictive Priors with the R Bayesian Evidence Synthesis Tools. Weber, S., et al. Journal of Statistical Software 100.19 (2021): 1548-7660.

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250), theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "stepwise")

MAPprior_cont(data = trial_data, arm = 3)
```

mixmodel_AR1_cal_cont Mixed regression model analysis for continuous data adjusting for calendar time units as a random factor with AR1 correlation structure

Description

This function performs linear mixed model regression taking into account all trial data until the arm under study leaves the trial and adjusting for calendar time units as random factors with AR1 correlation structure.

Usage

```
mixmodel_AR1_cal_cont(
  data,
  arm,
  alpha = 0.025,
  ci = FALSE,
  unit_size = 25,
  ncc = TRUE,
  check = TRUE,
  ...
)
```

Arguments

data

Data frame with trial data, e.g. result from the datasim_cont() function. Must contain columns named 'treatment' and 'response'.

mixmodel_AR1_cont 35

arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
ci	Logical. Indicates whether confidence intervals should be computed. Default=FALSE.
unit_size	Integer. Number of patients per calendar time unit. Default=25.
ncc	Logical. Indicates whether to include non-concurrent data into the analysis. Default=TRUE.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
mixmodel_AR1_cal_cont(data = trial_data, arm = 3, ci = TRUE)</pre>
```

mixmodel_AR1_cont Mixed regression model analysis for continuous data adjusting for periods as a random factor with AR1 correlation structure

Description

This function performs linear mixed model regression taking into account all trial data until the arm under study leaves the trial and adjusting for periods as random factors with AR1 correlation structure.

Usage

```
mixmodel_AR1_cont(
  data,
   arm,
  alpha = 0.025,
   ci = FALSE,
   ncc = TRUE,
   check = TRUE,
   ...
)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_cont() function. Must contain columns named 'treatment', 'response' and 'period'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
ci	Logical. Indicates whether confidence intervals should be computed. Default=FALSE.
ncc	Logical. Indicates whether to include non-concurrent data into the analysis. Default=TRUE.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250), theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear") mixmodel_AR1_cont(data = trial_data, arm = 3, ci = TRUE)
```

mixmodel_cal_cont 37

endar time units as a random factor	mixmodel_cal_cont	Mixed regression model analysis for continuous data adjusting for calendar time units as a random factor
-------------------------------------	-------------------	--

Description

This function performs linear mixed model regression taking into account all trial data until the arm under study leaves the trial and adjusting for calendar time units as random factors.

Usage

```
mixmodel_cal_cont(
  data,
  arm,
  alpha = 0.025,
  ci = FALSE,
  unit_size = 25,
  ncc = TRUE,
  check = TRUE,
  ...
)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_cont() function. Must contain columns named 'treatment' and 'response'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
ci	Logical. Indicates whether confidence intervals should be computed. Default=FALSE.
unit_size	Integer. Number of patients per calendar time unit. Default=25.
ncc	Logical. Indicates whether to include non-concurrent data into the analysis. Default=TRUE.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval

38 mixmodel_cont

- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250), theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear") mixmodel_cal_cont(data = trial_data, arm = 3, ci = TRUE)
```

mixmodel_cont

Mixed regression model analysis for continuous data adjusting for periods as a random factor

Description

This function performs linear mixed model regression taking into account all trial data until the arm under study leaves the trial and adjusting for periods as random factors.

Usage

```
mixmodel_cont(
  data,
  arm,
  alpha = 0.025,
  ci = FALSE,
  ncc = TRUE,
  check = TRUE,
  ...
)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_cont() function. Must contain columns named 'treatment', 'response' and 'period'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
ci	Logical. Indicates whether confidence intervals should be computed. Default=FALSE.

ncc	Logical. Indicates whether to include non-concurrent data into the analysis. Default=TRUE.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
 trial_data \leftarrow datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250), \\ theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear") \\ mixmodel_cont(data = trial_data, arm = 3, ci = TRUE)
```

```
mixmodel_int_cal_cont Mixed regression model analysis for continuous data using the covari-
ates treatment and calendar time unit as fixed effects and the interac-
tion between them as a random effect
```

Description

This function performs linear mixed model regression taking into account all trial data until the arm under study leaves the trial and adjusting for calendar time units as random factors.

Usage

```
mixmodel_int_cal_cont(
  data,
  arm,
  alpha = 0.025,
  ci = FALSE,
  unit_size = 25,
  ncc = TRUE,
  check = TRUE,
  ...
)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_cont() function. Must contain columns named 'treatment' and 'response'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
ci	Logical. Indicates whether confidence intervals should be computed. Default=FALSE.
unit_size	Integer. Number of patients per calendar time unit. Default=25.
ncc	Logical. Indicates whether to include non-concurrent data into the analysis. Default=TRUE.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

mixmodel_int_cont 41

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
mixmodel_int_cal_cont(data = trial_data, arm = 3, ci = TRUE)</pre>
```

mixmodel_int_cont

Mixed regression model analysis for continuous data using the covariates treatment and period as fixed effects and the interaction between them as a random effect

Description

This function performs linear mixed model regression taking into account all trial data until the arm under study leaves the trial and adjusting for periods as random factors.

Usage

```
mixmodel_int_cont(
  data,
  arm,
  alpha = 0.025,
  ci = FALSE,
  ncc = TRUE,
  check = TRUE,
  ...
)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_cont() function. Must contain columns named 'treatment', 'response' and 'period'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
ci	Logical. Indicates whether confidence intervals should be computed. Default=FALSE.
ncc	Logical. Indicates whether to include non-concurrent data into the analysis. Default=TRUE.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

42 piecewise_cal_cont

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
mixmodel_int_cont(data = trial_data, arm = 3, ci = TRUE)</pre>
```

piecewise_cal_cont

Model-based analysis for continuous data using discontinuous piecewise polynomials per calendar time unit

Description

This function performs linear regression taking into account all trial data until the arm under study leaves the trial and adjusting for time using discontinuous piecewise polynomials in each calendar time unit.

Usage

```
piecewise_cal_cont(
  data,
  arm,
  alpha = 0.025,
  unit_size = 25,
  ncc = TRUE,
  poly_degree = 3,
  check = TRUE,
  ...
)
```

piecewise_cal_cont 43

Arguments

data	Data frame with trial data, e.g. result from the datasim_cont() function. Must contain columns named 'treatment', 'response' and 'j'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
unit_size	Integer. Number of patients per calendar time unit. Default=25.
ncc	Logical. Indicates whether to include non-concurrent data into the analysis. Default=TRUE.
poly_degree	Integer. Degree of the piecewise polynomial. Default=3.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250), theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear") piecewise_cal_cont(data = trial_data, arm = 3)
```

44 piecewise_cont

piecewise_cont	Model-based analysis for continuous data using discontinuous piece- wise polynomials per period

Description

This function performs linear regression taking into account all trial data until the arm under study leaves the trial and adjusting for time using discontinuous piecewise polynomials in each period.

Usage

```
piecewise_cont(
  data,
  arm,
  alpha = 0.025,
  ncc = TRUE,
  poly_degree = 3,
  check = TRUE,
  ...
)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_cont() function. Must contain columns named 'treatment', 'response', 'period' and 'j'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
ncc	Logical. Indicates whether to include non-concurrent data into the analysis. Default=TRUE.
poly_degree	Integer. Degree of the piecewise polynomial. Default=3.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

plot_trial 45

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
piecewise_cont(data = trial_data, arm = 3)</pre>
```

plot_trial

Function for visualizing the simulated trial

Description

This function creates a plot visualizing the trial progress over time.

Usage

```
plot_trial(treatments)
```

Arguments

treatments

Vector with indices of assigned arms for each participant, ordered by time, e.g. column treatment from the dataframe resulting from the datasim_bin() or datasim_cont() function.

Value

ggplot showing trial progress over time.

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_bin(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
p0 = 0.7, OR = rep(1.8, 3), lambda = rep(0.15, 4), trend="stepwise")
plot_trial(treatments = trial_data$treatment)</pre>
```

46 poolmodel_bin

-		
noo l	.model	hin

Pooled analysis for binary data

Description

This function performs pooled analysis (naively pooling concurrent and non-concurrent controls without adjustment) using a logistic model.

Usage

```
poolmodel_bin(data, arm, alpha = 0.025, check = TRUE, ...)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_bin() function. Must contain columns named 'treatment', 'response' and 'period'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

Details

The pooled analysis takes into account only the data from the evaluated experimental treatment arm and the whole control arm and uses a logistic regression model to evaluate the given treatment arm. Denoting by y_j the response probability for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

$$g(E(y_j)) = \eta_0 + \theta_M \cdot I(k_j = M)$$

where $g(\cdot)$ denotes the logit link function and η_0 is the log odds in the control arm; θ_M represents the log odds ratio of treatment M and control.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the log-odds ratio
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

poolmodel_cont 47

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_bin(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
p0 = 0.7, OR = rep(1.8, 3), lambda = rep(0.15, 4), trend="stepwise")
poolmodel_bin(data = trial_data, arm = 3)</pre>
```

poolmodel_cont

Pooled analysis for continuous data

Description

This function performs pooled analysis (naively pooling concurrent and non-concurrent controls without adjustment) using a linear model.

Usage

```
poolmodel_cont(data, arm, alpha = 0.025, check = TRUE, ...)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_cont() function. Must contain columns named 'treatment', 'response' and 'period'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

Details

The pooled analysis takes into account only the data from the evaluated experimental treatment arm and the whole control arm and uses a linear regression model to evaluate the given treatment arm. Denoting by y_j the continuous response for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

$$E(y_j) = \eta_0 + \theta_M \cdot I(k_j = M)$$

where η_0 is the response in the control arm; θ_M represents the treatment effect of treatment M as compared to control.

48 seasonal_trend

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
poolmodel_cont(data = trial_data, arm = 3)</pre>
```

seasonal_trend

Generation of a seasonal trend

Description

This function generates a time trend for given time points in the trial according to a periodic function.

Usage

```
seasonal_trend(j, lambda, n_wave, n_total, trend_mean, trend_var)
```

Arguments

	CD*	•	1 1 1 1	. 1	1 111	. 1
	Time	nointe tor	· which the	trend	should be	generated.
- 1	111110	pomis ioi	willen uic	ucnu	siiouiu oc	generateu.

lambda Strength of time trend.

n_wave How many cycles (waves) should the time trend have (ψ) .

n_total Total sample size in the trial.

trend_mean Integer. In case of random time trends, the strength of the time trend will be

generated from $N(trend_mean, trend_var)$.

trend_var Integer. In case of random time trends, the strength of the time trend will be

generated from $N(\text{trend_mean}, \text{trend_var})$.

sepmodel_adj_bin 49

Details

The time trend is generated according to the function $f(j) = \lambda \cdot \sin(\psi \cdot 2\pi \cdot \frac{j-1}{N-1})$, where N is the total sample size (parameter n_total) and the parameter ψ corresponds to the input parameter n_wave.

Value

Time trend for time points j.

Author(s)

Marta Bofill Roig, Pavla Krotka

sepmodel_adj_bin

Separate analysis for binary data adjusted for periods

Description

This function performs separate analysis (only taking into account concurrent controls) using a logistic model and adjusting for periods, if the treatment arm stays in the trial for more than one period.

Usage

```
sepmodel_adj_bin(data, arm, alpha = 0.025, check = TRUE, ...)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_bin() function. Must contain columns named 'treatment', 'response' and 'period'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

Details

The adjusted separate analysis takes into account only the data from the evaluated experimental treatment arm and its concurrent controls and adjusts for the time effect by including the factor period (defined as a time interval bounded by any treatment arm entering or leaving the platform). The time is then modelled as a step-function with jumps at the beginning of each period. Denoting by y_j the response probability for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

50 sepmodel_adj_cont

$$g(E(y_j)) = \eta_0 + \theta_M \cdot I(k_j = M) + \sum_{s=S_{M_1}+1}^{S_{M_2}} \tau_s \cdot I(t_j \in T_{S_s})$$

where $g(\cdot)$ denotes the logit link function and η_0 is the log odds in the concurrent controls; θ_M represents the log odds ratio of treatment M and control; τ_s indicates the stepwise period effect in terms of the log odds ratio between periods S_{M_1} and s ($s = S_{M_1} + 1, \ldots, S_{M_2}$), where S_{M_1} and S_{M_2} denote the periods, in which the investigated treatment arm joined and left the trial, respectively.

If the data consists of only one period, the period in not used as covariate.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the log-odds ratio
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_bin(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
p0 = 0.7, OR = rep(1.8, 3), lambda = rep(0.15, 4), trend="stepwise")
sepmodel_adj_bin(data = trial_data, arm = 3)</pre>
```

sepmodel_adj_cont

Separate analysis for continuous data adjusted for periods

Description

This function performs separate analysis (only taking into account concurrent controls) using a linear model and adjusting for periods, if the treatment arm stays in the trial for more than one period.

Usage

```
sepmodel_adj_cont(data, arm, alpha = 0.025, check = TRUE, ...)
```

sepmodel_adj_cont 51

Arguments

data	Data frame with trial data, e.g. result from the datasim_cont() function. Must contain columns named 'treatment', 'response' and 'period'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

Details

The adjusted separate analysis takes into account only the data from the evaluated experimental treatment arm and its concurrent controls and adjusts for the time effect by including the factor period (defined as a time interval bounded by any treatment arm entering or leaving the platform). The time is then modelled as a step-function with jumps at the beginning of each period. Denoting by y_j the response probability for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

$$E(y_j) = \eta_0 + \theta_M \cdot I(k_j = M) + \sum_{s=S_{M_1}+1}^{S_{M_2}} \tau_s \cdot I(t_j \in T_{S_s})$$

where η_0 is the response in the concurrent controls; θ_M represents the treatment effect of treatment M as compared to control; τ_s indicates the stepwise period effect between periods S_{M_1} and s ($s = S_{M_1} + 1, \ldots, S_{M_2}$), where S_{M_1} and S_{M_2} denote the periods, in which the investigated treatment arm joined and left the trial, respectively.

If the data consists of only one period, the period in not used as covariate.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

52 sepmodel_bin

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
sepmodel_adj_cont(data = trial_data, arm = 3)</pre>
```

sepmodel_bin

Separate analysis for binary data

Description

This function performs separate analysis (only taking into account concurrent controls) using a logistic model.

Usage

```
sepmodel_bin(data, arm, alpha = 0.025, check = TRUE, ...)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_bin() function. Must contain columns named 'treatment', 'response' and 'period'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

Details

The separate analysis takes into account only the data from the evaluated experimental treatment arm and its concurrent controls and uses a logistic regression model to evaluate the given treatment arm. Denoting by y_j the response probability for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

$$g(E(y_i)) = \eta_0 + \theta_M \cdot I(k_i = M)$$

where $g(\cdot)$ denotes the logit link function and η_0 is the log odds in the concurrent controls; θ_M represents the log odds ratio of treatment M and control.

sepmodel_cont 53

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the log-odds ratio
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_bin(num_arms = 3, n_arm = 100, d = c(0, 100, 250), p0 = 0.7, OR = rep(1.8, 3), lambda = rep(0.15, 4), trend="stepwise") sepmodel_bin(data = trial_data, arm = 3)
```

sepmodel_cont

Separate analysis for continuous data

Description

This function performs separate analysis (only taking into account concurrent controls) using a linear model.

Usage

```
sepmodel_cont(data, arm, alpha = 0.025, check = TRUE, ...)
```

Arguments

data	Data frame trial data, e.g. result from the datasim_cont() function. Must contain columns named 'treatment', 'response' and 'period'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

54 sim_study

Details

The separate analysis takes into account only the data from the evaluated experimental treatment arm and its concurrent controls and uses a linear regression model to evaluate the given treatment arm. Denoting by y_j the continuous response for patient j, by k_j the arm patient j was allocated to, and by M the treatment arm under evaluation, the regression model is given by:

$$E(y_j) = \eta_0 + \theta_M \cdot I(k_j = M)$$

where η_0 is the response in the concurrent controls; θ_M represents the treatment effect of treatment M as compared to control.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250),
theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear")
sepmodel_cont(data = trial_data, arm = 3)</pre>
```

sim_study

Wrapper function performing simulation studies for a given set of scenarios (not parallelized)

Description

This function performs a simulation study for a given set of scenarios, analyzing simulated data using different models as indicated by the user. Performs inference for indicated experimental treatment arms. Simulates the probability to reject H_0 based on a given number of replications.

sim_study 55

Usage

```
sim_study(
  nsim,
  scenarios,
  arms,
  models = c("fixmodel", "sepmodel", "poolmodel"),
  endpoint,
  verbose = TRUE
)
```

Arguments

nsim Integer. Number of replications. Must be larger than 1.

scenarios Data frame containing all parameters for scenarios that should be simulated.

arms Integer vector with treatment arms to perform inference on. These arms are

compared to the control group. Default - all arms except the first one.

models Character vector with models that should be used for the analysis. Default=c("fixmodel",

"sepmodel", "poolmodel"). Available models for continuous endpoints are: 'fix-model', 'fixmodel_cal', 'gam', 'MAPprior', 'mixmodel', 'mixmodel_cal', 'mixmodel_AR1_cal', 'piecewise', 'piecewise_cal', 'poolmodel', 'sepmodel', 'sepmodel_adj', 'splines', 'splines_cal', 'timemachine'. Available models for binary endpoints are: 'fixmodel', 'fixmodel_cal', 'MAPprior', 'poolmodel',

'sepmodel', 'sepmodel_adj', 'timemachine'.

endpoint Endpoint indicator. "cont" for continuous endpoints, "bin" for binary endpoints.

verbose Logical. Indicates whether to print a message (system time and number of fin-

ished scenarios) after simulating each scenario in order to track the progress of

the simulations. Default=TRUE.

Value

Data frame with all considered scenarios and corresponding results - the probability to reject H_0 .

Author(s)

Pavla Krotka

Examples

```
# Create data frame with all parameters:
sim_scenarios <- data.frame(num_arms = 4,
n_arm = 250,
d1 = 250*0,
d2 = 250*1,
d3 = 250*2,
d4 = 250*3,
period_blocks = 2,
mu0 = 0,</pre>
```

sim_study_par

```
sigma = 1,
theta1 = 0,
theta2 = 0,
theta3 = 0,
theta4 = 0,
lambda0 = rep(seq(-0.15, 0.15, length.out = 9), 2),
lambda1 = rep(seq(-0.15, 0.15, length.out = 9), 2),
lambda2 = rep(seq(-0.15, 0.15, length.out = 9), 2),
lambda3 = rep(seq(-0.15, 0.15, length.out = 9), 2),
lambda4 = rep(seq(-0.15, 0.15, length.out = 9), 2),
trend = c(rep("linear", 9), rep("stepwise_2", 9)),
alpha = 0.025,
ncc = TRUE)
# Run simulation study:
sim_results < -sim_study(nsim = 100, scenarios = sim_scenarios, arms = c(3, 4),
models = c("fixmodel", "sepmodel", "poolmodel"), endpoint = "cont")
```

sim_study_par

Wrapper function performing simulation studies for a given set of scenarios (parallelized on replication level)

Description

This function performs a simulation study for a given set of scenarios, analyzing simulated data using different models as indicated by the user. Performs inference for indicated experimental treatment arms. Simulates the probability to reject H_0 , and the bias, as well as the mean squared error (MSE) of the treatment effect estimates based on a given number of replications.

Usage

```
sim_study_par(
   nsim,
   scenarios,
   arms,
   models = c("fixmodel", "sepmodel", "poolmodel"),
   endpoint,
   perc_cores = 0.9,
   verbose = TRUE
)
```

Arguments

nsim Integer. Number of replications. Must be larger than 1.

scenarios Data frame containing all parameters for scenarios that should be simulated.

sim_study_par 57

Integer vector with treatment arms to perform inference on. These arms are arms compared to the control group. Default - all arms except the first one. models Character vector with models that should be used for the analysis. Default=c("fixmodel", "sepmodel", "poolmodel"). Available models for continuous endpoints are: 'fixmodel', 'fixmodel_cal', 'gam', 'MAPprior', 'mixmodel', 'mixmodel_cal', 'mixmodel_AR1', 'mixmodel_AR1_cal', 'piecewise', 'piecewise_cal', 'poolmodel', 'sepmodel', 'sepmodel_adj', 'splines', 'splines_cal', 'timemachine'. Available models for binary endpoints are: 'fixmodel', 'fixmodel_cal', 'MAPprior', 'poolmodel', 'sepmodel', 'sepmodel_adj', 'timemachine'. Endpoint indicator. "cont" for continuous endpoints, "bin" for binary endpoints. endpoint Double. What percentage of available cores should be used for the simulations. perc_cores Default=0.9. verbose Logical. Indicates whether to print a message (system time and number of finished scenarios) after simulating each scenario in order to track the progress of

Value

Data frame with all considered scenarios and corresponding results - the probability to reject H_0 , and the bias, as well as the mean squared error (MSE) of the treatment effect estimates.

the simulations. Default=TRUE.

Author(s)

Pavla Krotka

Examples

```
# Create data frame with all parameters:
sim_scenarios <- data.frame(num_arms = 4,</pre>
n_{arm} = 250,
d1 = 250*0,
d2 = 250 * 1,
d3 = 250 * 2,
d4 = 250*3,
period_blocks = 2,
mu0 = 0,
sigma = 1,
theta1 = 0,
theta2 = 0,
theta3 = 0,
theta4 = 0,
lambda0 = rep(seq(-0.15, 0.15, length.out = 9), 2),
lambda1 = rep(seq(-0.15, 0.15, length.out = 9), 2),
lambda2 = rep(seq(-0.15, 0.15, length.out = 9), 2),
lambda3 = rep(seq(-0.15, 0.15, length.out = 9), 2),
lambda4 = rep(seq(-0.15, 0.15, length.out = 9), 2),
trend = c(rep("linear", 9), rep("stepwise_2", 9)),
alpha = 0.025,
ncc = TRUE)
```

58 splines_cal_cont

```
# Run simulation study:
sim_results <- sim_study_par(nsim = 100, scenarios = sim_scenarios, arms = c(3, 4),
models = c("fixmodel", "sepmodel", "poolmodel"), endpoint = "cont")</pre>
```

splines_cal_cont

Spline regression analysis for continuous data with knots placed according to calendar time units

Description

This function performs linear regression taking into account all trial data until the arm under study leaves the trial and adjusting for time using regression splines with knots placed according to calendar time units.

Usage

```
splines_cal_cont(
  data,
  arm,
  alpha = 0.025,
  unit_size = 25,
  ncc = TRUE,
  bs_degree = 3,
  check = TRUE,
  ...
)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_cont() function. Must contain columns named 'treatment', 'response' and 'j'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
unit_size	Integer. Number of patients per calendar time unit. Default=25.
ncc	Logical. Indicates whether to include non-concurrent data into the analysis. Default=TRUE.
bs_degree	Integer. Degree of the polynomial spline. Default=3 for cubic spline.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

splines_cont 59

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- knots positions of the knots in terms of patient index
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250), theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear") splines_cal_cont(data = trial_data, arm = 3)
```

splines_cont

Spline regression analysis for continuous data with knots placed according to periods

Description

This function performs linear regression taking into account all trial data until the arm under study leaves the trial and adjusting for time using regression splines with knots placed according to periods.

Usage

```
splines_cont(
  data,
  arm,
  alpha = 0.025,
  ncc = TRUE,
  bs_degree = 3,
  check = TRUE,
  ...
)
```

splines_cont

Arguments

data	Data frame with trial data, e.g. result from the datasim_cont() function. Must contain columns named 'treatment', 'response', 'period' and 'j'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Significance level (one-sided). Default=0.025.
ncc	Logical. Indicates whether to include non-concurrent data into the analysis. Default=TRUE.
bs_degree	Integer. Degree of the polynomial spline. Default=3 for cubic spline.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val p-value (one-sided)
- treat_effect estimated treatment effect in terms of the difference in means
- lower_ci lower limit of the (1-2*alpha)*100% confidence interval
- upper_ci upper limit of the (1-2*alpha)*100% confidence interval
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)
- knots positions of the knots in terms of patient index
- model fitted model

Author(s)

Pavla Krotka

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250), theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear") splines_cont(data = trial_data, arm = 3)
```

sw_trend 61

sw_trend	Generation of stepwise trend with equal jumps between periods	

Description

This function generates a stepwise trend for a given period. No time trend is assumed in the first period.

Usage

```
sw_trend(cj, lambda, trend_mean, trend_var)
```

Strength of time trend.

Arguments

lambda

cj Period indicator.

trend_mean Integer. In case of random time trends, the strength of the time trend will be

generated from N(trend_mean, trend_var).

trend_var Integer. In case of random time trends, the strength of the time trend will be

generated from $N(trend_mean, trend_var)$.

Details

The time trend is generated according to the function $f(j) = \lambda \cdot (c_j - 1)$, where c_j is an index of the period patient j was enrolled in.

Value

Time trend in period c_i .

Author(s)

Marta Bofill Roig, Pavla Krotka

timemachine_bin Time machine analysis for binary data	timemachine_bin	Time machine analysis for binary data	
---	-----------------	---------------------------------------	--

Description

This function performs analysis of binary data using the Time Machine approach. It takes into account all data until the investigated arm leaves the trial. It is based on logistic regression with treatment as a categorical variable and covariate adjustment for time via a second-order Bayesian normal dynamic linear model (separating the trial into buckets of pre-defined size).

62 timemachine_bin

Usage

```
timemachine_bin(
  data,
  arm,
  alpha = 0.025,
  prec_theta = 0.001,
  prec_eta = 0.001,
  tau_a = 0.1,
  tau_b = 0.01,
  bucket_size = 25,
  check = TRUE,
  ...
)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_bin() function. Must contain columns named 'treatment', 'response' and 'period'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Decision boundary (one-sided). Default=0.025.
prec_theta	Double. Precision $(1/\sigma_\theta^2)$ of the prior regarding the treatment effect θ . I.e. $\theta \sim N(0,\sigma_\theta^2)$. Default=0.001.
prec_eta	Double. Precision $(1/\sigma_{\eta_0}^2)$ of the prior regarding the control log-odds η_0 . I.e. $\eta_0 \sim N(0, \sigma_{\eta_0}^2)$. Default=0.001.
tau_a	Double. Parameter a_{τ} of the Gamma distribution for the precision parameter τ in the model for the time trend. I.e., $\tau \sim Gamma(a_{\tau},b_{\tau})$. Default=0.1.
tau_b	Double. Parameter b_{τ} of the Gamma distribution for the precision parameter τ in the model for the time trend. I.e., $\tau \sim Gamma(a_{\tau},b_{\tau})$. Default=0.01.
bucket_size	Integer. Number of patients per time bucket. Default=25.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
• • •	Further arguments passed by wrapper functions when running simulations.

Details

The Time Machine divides the trial duration into C calendar time intervals of equal length ("buckets"), which are indexed backwards in time. That is to say, the most recent time interval is denoted by c=1 and the time interval corresponding to the beginning of the trial by c=C. The analysis is performed as soon as the analyzed treatment arm finishes in the trial.

The model is defined as follows:

$$g(E(y_j)) = \eta_0 + \theta_{k_j} + \alpha_{c_j}$$

timemachine_bin 63

where y_j is the binary response for patient j and $g(\cdot)$ is the logit link function, which maps the expected value of the patient response to the linear predictors in the model. The model intercept η_0 denotes the response of the control group at time of the analysis, θ_{k_j} is the effect of the treatment arm k that patient j was enrolled in, relative to control in terms of the log odds ratio. For the parameters η_0 and θ_{k_j} , normal prior distributions are assumed, with mean 0 and variances $\sigma_{\eta_0}^2$ and σ_{θ}^2 , respectively:

$$\eta_0 \sim \mathcal{N}(0, \sigma_{\eta_0}^2)$$

$$\theta_{k_i} \sim \mathcal{N}(0, \sigma_{\theta}^2)$$

In the Time Machine, time effect is represented by α_{c_j} , which is the change in the response in time bucket c_j (which denotes the time bucket in which patient j is enrolled) compared to the most recent time bucket c=1 and is modeled using a Bayesian second-order normal dynamic linear model. This creates a smoothing over the control response, such that closer time buckets are modeled with more similar response rates:

$$\alpha_1 = 0$$

$$\alpha_2 \sim \mathcal{N}(0, 1/\tau)$$

$$\alpha_c \sim \mathcal{N}(2\alpha_{c-1} - \alpha_{c-2}, 1/\tau), 3 \le c \le C$$

where τ denotes the drift parameter that controls the degree of smoothing over the time buckets and is assumed to have a Gamma hyperprior distribution:

$$\tau \sim Gamma(a_{\tau}, b_{\tau})$$

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val posterior probability that the log-odds ratio is less than zero
- treat_effect posterior mean of log-odds ratio
- lower_ci lower limit of the (1-2*alpha)*100% credible interval for log-odds ratio
- upper_ci upper limit of the (1-2*alpha)*100% credible interval for log-odds ratio
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)

Author(s)

Dominic Magirr, Peter Jacko

References

The Bayesian Time Machine: Accounting for Temporal Drift in Multi-arm Platform Trials. Saville, B. R., Berry, D. A., et al. Clinical Trials 19.5 (2022): 490-501.

64 timemachine_cont

Examples

```
trial_data <- datasim_bin(num_arms = 3, n_arm = 100, d = c(0, 100, 250), p0 = 0.7, OR = rep(1.8, 3), lambda = rep(0.15, 4), trend="stepwise") timemachine_bin(data = trial_data, arm = 3)
```

timemachine_cont

Time machine analysis for continuous data

Description

This function performs analysis of continuous data using the Time Machine approach. It takes into account all data until the investigated arm leaves the trial. It is based on linear regression with treatment as a categorical variable and covariate adjustment for time via a second-order Bayesian normal dynamic linear model (separating the trial into buckets of pre-defined size).

Usage

```
timemachine_cont(
  data,
  arm,
  alpha = 0.025,
  prec_theta = 0.001,
  prec_eta = 0.001,
  tau_a = 0.1,
  tau_b = 0.01,
  prec_a = 0.001,
  prec_b = 0.001,
  bucket_size = 25,
  check = TRUE,
  ...
)
```

Arguments

data	Data frame with trial data, e.g. result from the datasim_cont() function. Must contain columns named 'treatment', 'response' and 'period'.
arm	Integer. Index of the treatment arm under study to perform inference on (vector of length 1). This arm is compared to the control group.
alpha	Double. Decision boundary (one-sided). Default=0.025.
prec_theta	Double. Precision $(1/\sigma_{\theta}^2)$ of the prior regarding the treatment effect θ . I.e. $\theta \sim N(0, \sigma_{\theta}^2)$. Default=0.001.
prec_eta	Double. Precision $(1/\sigma_{\eta_0}^2)$ of the prior regarding the control mean η_0 . I.e. $\eta_0 \sim N(0, \sigma_{\eta_0}^2)$. Default=0.001.

timemachine_cont 65

tau_a	Double. Parameter a_{τ} of the Gamma distribution for the precision parameter τ in the model for the time trend. I.e., $\tau \sim Gamma(a_{\tau}, b_{\tau})$. Default=0.1.
tau_b	Double. Parameter b_{τ} of the Gamma distribution for the precision parameter τ in the model for the time trend. I.e., $\tau \sim Gamma(a_{\tau},b_{\tau})$. Default=0.01.
prec_a	Double. Parameter a_{σ^2} of the Gamma distribution regarding the precision of the responses. I.e., $1/\sigma^2 \sim Gamma(a_{\sigma^2},b_{\sigma^2})$. Default=0.001.
prec_b	Double. Parameter b_{σ^2} of the Gamma distribution regarding the precision of the responses. I.e., $1/\sigma^2 \sim Gamma(a_{\sigma^2},b_{\sigma^2})$. Default=0.001.
bucket_size	Integer. Number of patients per time bucket. Default=25.
check	Logical. Indicates whether the input parameters should be checked by the function. Default=TRUE, unless the function is called by a simulation function, where the default is FALSE.
	Further arguments passed by wrapper functions when running simulations.

Details

The Time Machine divides the trial duration into C calendar time intervals of equal length ("buckets"), which are indexed backwards in time. That is to say, the most recent time interval is denoted by c=1 and the time interval corresponding to the beginning of the trial by c=C. The analysis is performed as soon as the analyzed treatment arm finishes in the trial.

The model is defined as follows:

$$E(y_j) = \eta_0 + \theta_{k_j} + \alpha_{c_j}$$

where y_j is the continuous response for patient j. The model intercept η_0 denotes the response of the control group at time of the analysis, θ_{k_j} is the effect of the treatment arm k that patient j was enrolled in, relative to control. For the parameters η_0 and θ_{k_j} , normal prior distributions are assumed, with mean 0 and variances $\sigma_{\eta_0}^2$ and σ_{θ}^2 , respectively:

$$\eta_0 \sim \mathcal{N}(0, \sigma_{\eta_0}^2)$$

$$\theta_{k_j} \sim \mathcal{N}(0, \sigma_{\theta}^2)$$

In the Time Machine, time effect is represented by α_{c_j} , which is the change in the response in time bucket c_j (which denotes the time bucket in which patient j is enrolled) compared to the most recent time bucket c=1 and is modeled using a Bayesian second-order normal dynamic linear model. This creates a smoothing over the control response, such that closer time buckets are modeled with more similar response rates:

$$\alpha_1 = 0$$

$$\alpha_2 \sim \mathcal{N}(0, 1/\tau)$$

$$\alpha_c \sim \mathcal{N}(2\alpha_{c-1} - \alpha_{c-2}, 1/\tau), 3 \le c \le C$$

where τ denotes the drift parameter that controls the degree of smoothing over the time buckets and is assumed to have a Gamma hyperprior distribution:

66 timemachine_cont

$$\tau \sim Gamma(a_{\tau}, b_{\tau})$$

The precision of the individual patient responses $(1/\sigma^2)$ is also assumed to have a Gamma hyperprior distribution:

$$1/\sigma^2 \sim Gamma(a_{\sigma^2}, b_{\sigma^2})$$

Value

List containing the following elements regarding the results of comparing arm to control:

- p-val posterior probability that the difference in means is less than zero
- treat_effect posterior mean of difference in means
- lower_ci lower limit of the (1-2*alpha)*100% credible interval for difference in means
- upper_ci upper limit of the (1-2*alpha)*100% credible interval for difference in means
- reject_h0 indicator of whether the null hypothesis was rejected or not (p_val < alpha)

Author(s)

Dominic Magirr, Peter Jacko

Examples

```
trial_data <- datasim_cont(num_arms = 3, n_arm = 100, d = c(0, 100, 250), theta = rep(0.25, 3), lambda = rep(0.15, 4), sigma = 1, trend = "linear") timemachine_cont(data = trial_data, arm = 3)
```

Index

```
datasim_bin, 3
                                                 splines_cont, 59
datasim_bin_2, 6
                                                 sw_trend, 61
{\tt datasim\_cont}, \\ 10
                                                 timemachine_bin, 61
fixmodel_bin, 14
                                                 timemachine_cont, 64
fixmodel_cal_bin, 16
fixmodel_cal_cont, 17
fixmodel_cont, 19
fixmodel_lin_cont, 21
gam_cont, 22
get_ss_matrix, 23
inv_u_trend, 24
linear_trend, 25
MAPprior_bin, 28
MAPprior_cont, 31
MAPpriorNew_cont, 26
mixmodel_AR1_cal_cont, 34
mixmodel_AR1_cont, 35
mixmodel_cal_cont, 37
mixmodel_cont, 38
mixmodel_int_cal_cont, 39
mixmodel_int_cont, 41
piecewise_cal_cont, 42
piecewise_cont, 44
plot_trial, 45
poolmodel_bin, 46
poolmodel_cont, 47
seasonal\_trend, 48
sepmodel_adj_bin, 49
sepmodel_adj_cont, 50
sepmodel_bin, 52
sepmodel_cont, 53
sim_study, 54
sim_study_par, 56
splines_cal_cont, 58
```